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Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence
Smooth (C k), Lipschitz (Lip), Gromov-Hausdorff (GH),
Sormani-Wenger Intrinsic Flat (SWIF) Convergence
[Gromov Structures-Metriques] [Sormani-Wenger JDG-2011]

Lecture 2: Open Problems about Scalar Curvature
Almost Rigidity of the Positive Mass Theorem
Geometric Stability of the Scalar Torus Rigidity Theorem
Scalar Sphere Rigidity Theorem and more....
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]

Lectures 3&4: Techniques to Apply to Prove Convergence
Ambrosio-Kirchheim Theory of Integral Currents
Decomposition into Regions with Lakzian
Properties with Portegies and Arzela-Ascoli Theorems
Volume Above Distance Below with Allen and Perales
See https://sites.google.com/site/intrinsicflatconvergence/
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Lecture 1: Geometric Notions of Convergence

Goal Today: Build Geometric Intuition

Viewing Riemannian Manifolds as Metric Spaces
and Introducing Integral Current Spaces

Notions of Convergence:
Smooth Convergence (C k),
Gromov Lipschitz Convergence (Lip),
Gromov-Hausdorff Convergence (GH),
Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (F),
Volume Preserving Intrinsic Flat Convergence (VF)
Allen-Perales-Sormani (VADB) Convergence

Recommended Resources:
[Gromov Structures-Metriques]
[Burago-Burago-Ivanov Text]
[Sormani-Wenger JDG-2011]
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]
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A Riemannian Manifold is a Smooth Metric Space
A Riemannian manifold (Mm, g) is a metric space (M, dg )

with a smooth collection of charts allowing us
to define tangent vectors in tangent planes at each point and
a metric tensor g which is an inner product on tangent vectors s.t.

dg (p, q) = inf{Lg (C ) : C (0) = p, C (1) = q}

where Lg (C ) =

∫ 1

0
g(C ′(s),C ′(s))1/2 ds

When M is compact, ∃ a geodesic, γp,q s.t. L(γp,q) = d(p, q).

A sphere with a bump: A torus:
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C k Limits of Sequences of Riemannian Manifolds

A C k smooth limit (M∞, g∞) is diffeomorphic to the sequence with
diffeomorphisms ψj : M∞ → Mj s.t. ψ∗j gj → g∞ C k smoothly on
M∞.

Thus: d∞(x , y) = lim
j→∞

dj(ψj(x), ψj(y)).

and Vol(Bp(R)) = lim
j→∞

Vol(Bψj (p)(R))

In fact:

dLip((Mj , dj), (M∞, d∞)) = Log(max{dil(ψj), dil(ψ
−1
j })→ 0

where

dil(ψj) = sup{dj(ψj(x), ψj(y))/d∞(x , y) : x 6= y}
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C k Limits of Sequences of Riemannian Manifolds
A smooth limit (M∞, g∞) is diffeomorphic to the sequence with
diffeomorphisms ψj : M∞ → Mj s.t. ψ∗j gj → g∞ smoothly on M∞.

Thus: d∞(x , y) = lim
j→∞

dj(ψj(x), ψj(y)).

and Vol(Bp(R)) = lim
j→∞

Vol(Bψj (p)(R))

In fact C 0 Convergence =⇒ Gromov Lipschitz (Lip) Convergence:

dLip((Mj , dj), (M∞, d∞)) = Log(max{dil(ψj), dil(ψ
−1
j })→ 0

where dil(ψj) = sup{dj(ψj(x), ψj(y))/d∞(x , y) : x 6= y}
which is well defined for biLipschitz sequences of metric spaces.



Lip Limits of Sequences of Metric Spaces
A Gromov-Lipschitz limit (M∞, d∞) of (Mj , dj) has biLipschitz
maps ψj : M∞ → Mj s.t. dil(ψj)→ 1 and dil(ψ−1j )→ 1.

Thus: d∞(x , y) = lim
j→∞

dj(ψj(x), ψj(y)).

and Vol(Bp(R)) = lim
j→∞

Vol(Bψj (p)(R))

Examples with no C k or Lip limit:
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Lip Limits of Sequences of Metric Spaces
A Gromov-Lipschitz limit (M∞, d∞) of (Mj , dj) has biLipschitz
maps ψj : M∞ → Mj s.t. dil(ψj)→ 1 and dil(ψ−1j )→ 1.

Thus: d∞(x , y) = lim
j→∞

dj(ψj(x), ψj(y)).

and Vol(Bp(R)) = lim
j→∞

Vol(Bψj (p)(R))

Examples with no C k or Lip limit: limj→∞ Vol(Bψj (p)(R)) = 0



Gromov Hausdorff Limits via Almost Isometries

Gromov’s Defn: Compact metric spaces (Xj , dj)
GH−→ (X∞, d∞)

iff ∃ εj -almost isometries ψj : X∞ → Xj where εj → 0.

This means that ψj are εj -almost distance preserving:

|d∞(x , y)− dj(ψj(x), ψj(y))| < εj ∀x , y ∈ X∞

and εj -almost onto: Xj ⊂ Tεj (ψj(X∞)).
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Here our rainbow drawn ψj are not onto nor continuous:



Gromov Hausdorff Limits via Nets

Gromov’s Prop: Compact (Xj , dj)
GH−→ (X∞, d∞) iff

∃ εj → 0 and there exist εj -nets Sj ⊂ Xj ⊂ Tεj (Sj) which are finite

and εj -almost distance preserving bijections, ψj : S∞ → Sj , s.t.

|d∞(x , y)− dj(ψj(x), ψj(y))| < εj ∀x , y ∈ S∞.
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Gromov’s Compactness Theorem
If (Xj , dj) are compact metric spaces with Diam(Xj) ≤ D such that

∀r > 0 ∃ r -nets S r
j with cardinality N(r) not depending on j

then a subsequence (Xjk , djk )
GH−→ (X∞, d∞) where X∞ is compact.

Pf: Fix r > 0: dj restricted to S r
j × S r

j is an N(r)× N(r) matrix.
Taking a seq r → 0 diagonalize the conv subsequences of matrices.
This gives a countable pseudometric space with r -nets of card N(r)
X∞ is the metric completion of this pseudometric space.

Gromov Thm: Diam(Mj) ≤ D and Riccij ≥ H =⇒ ∃Mjk
GH−→ X∞
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GH as Intrinsic Hausdorff Distance
The Gromov-Hausdorff distance between compact spaces Mi is:

dGH(M1,M2) = inf
{
dZ
H (ϕ1(M1), ϕ2(M2)) | ϕi : Mi → Z

}
where the infimum is taken over all compact metric spaces, Z ,

and over all distance preserving maps ϕi : Mm
i → Z .

Here: dZ
H (ϕ1(M1), ϕ2(M2)) is the Hausdorff distance:

= inf {R : ϕ1(M1) ⊂ TR(ϕ2(M2)), ϕ2(M2) ⊂ TR(ϕ1(M1))}

Gromov: dGH(M2,M1) < ε =⇒ ∃ 2ε-almost isom ψ : M2 → M1.
Hint: Let ψ(p) be a point q ∈ M1 s.t. dZ (ϕ2(p), ϕ1(q)) is min.
Gromov: dGH(M2,M1) = 0 =⇒ ∃ an isometry ψ : M2 → M1.
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Hint: Let ψ(p) be a point q ∈ M1 s.t. dZ (ϕ2(p), ϕ1(q)) is min.

Gromov: dGH(M2,M1) = 0 =⇒ ∃ an isometry ψ : M2 → M1.
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H (ϕj(Mj), ϕ∞(M∞))→ 0.

Thus, there is a uniform N(r) = number of pts in an r-net of Mj .
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More Sequences of Riemannian Manifolds

The Lip and GH limit is a manifold with a conical singularity.

The GH limit is a smooth manifold with a point singularity with
infinite topological type. See Sormani-Wei-JDG.

Gromov: if ∃ GH lim then N(r) is uniform. No GH lim here!!!
Ilmanen: ∃ spheres M3 with Scalar > 0 and inc many wells!!!
So GH only works well for Ric ≥ H. We need a new convergence!!!
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GH as Intrinsic Hausdorff Distance
Recall: The Gromov-Hausdorff distance between Mm

i is:

dGH(Mm
1 ,M

m
2 ) = inf

{
dZ
H (ϕ1(Mm

1 ), ϕ2(Mm
2 )) | ϕi : Mm

i → Z
}

where the infimum is taken over all compact metric spaces, Z ,
and over all distance preserving maps ϕi : Mm

i → Z :

Here: dZ
H (ϕ1(Mm

1 ), ϕ2(Mm
2 )) is the Hausdorff distance:

= inf {R : ϕ1(Mm
1 ) ⊂ TR(ϕ2(Mm

2 )), ϕ2(Mm
2 ) ⊂ TR(ϕ1(Mm

1 ))}

where R is as large as the depth of a well:
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Sormani-Wenger: Intrinsic Flat Distance
The intrinsic flat distance between oriented manifolds Mm

i is:

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#[[Mm

1 ]], ϕ2#[[Mm
2 ]]) | ϕi : Mm

i → Z
}

where the infimum is taken over all complete metric spaces, Z ,
and over all distance preserving maps ϕi : Mm

i → Z .

Here: dZ
F (ϕ1#[[Mm

1 ]], ϕ2#[[Mm
2 ]]) is the Federer-Fleming Flat dist

= inf

{
M

length
( A ) + M

area
( B ) : A + ∂ B = ϕ1#[[Mm

1 ]]− ϕ2#[[Mm
2 ]]

}

This is defined rigorously using [Ambrosio-Kirchheim] for
Mj = (Xj , dj ,Tj) which are metric spaces with biLipschitz charts

and an integral current structure Tj such that set(Tj) = Xj .
Ambriosio-Kirchheim Theory will be covered in Lecture 3.
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Sormani-Wenger: Intrinsic Flat Limits

Defn [SW]: Mj
SWIF−−−→ MSWIF iff dSWIF (Mj ,MSWIF )→ 0.

Observe how regions of small volume disappear.

So the limits may not be connected metric spaces:

The limit spaces are called integral current spaces (X , d ,T ):
they have countably many biLip charts and a notion of integration
over those charts called the integral current structure, T .
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Sormani-Wenger: Integral Current Spaces
A sequence of compact Riemannian manifolds
can converge in the intrinsic flat (SWIF) sense to
the following limit which is an integral current space:

Defn: An Integral Current Space (X,d,T) is m-rectifiable
(which means it has countably many bi-Lipschitz charts
of the same dimension m as the original sequence)
and it has a well defined (m-1)-rectifiable boundary.
The charts are oriented and have integer valued weights, θ,
and are used to define the integral current structure, T ,
and a measure ||T || = θλHm where λ is the area factor.
In Lesson 3 we will define T using Ambrosio-Kirchheim Theory.
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Sormani-Wenger: Intrinsic Flat Distance
The intrinsic flat distance between integral current spaces
Mm

i = (Xi , di ,Ti ) which we will define carefully in Lecture 3 is:
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More Intrinsic Flat Limits

Defn [SW]: Mj
SWIF−−−→ MSWIF iff dSWIF (Mj ,MSWIF )→ 0

where M∞ is an integral current space.

What about collapsing tori??
What about spheres shrinking to a point?
If Vol(Mj)→ 0 does the sequence disappear???

We say Mm
j

SWIF−−−→ 0m where 0m is the zero integral current space.
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SWIF convergence to the 0m space

Defn [SW]: We say Mj
SWIF−−−→ 0 iff dSWIF (Mm

j , 0
m)→ 0 where

dSWIF (Mm
j , 0

m) = inf
{
dZ
F (ϕ1#[[Mm

1 ]], [[0]]) | ϕj : Mm
j → Z

}
where the infimum is taken over all complete metric spaces, Z ,

and over all distance preserving maps ϕj : Mm
j → Z .

Here: dZ
F

(
ϕj#[[Mm

j ]], [[0]]
)

is Federer-Fleming Flat dist:

= inf
{

M( A ) + M( B ) : A + ∂ B = ϕj#[[Mm
j ]]− [[0]]

}

Thm [SW]: If Vol(Mj)→ 0 then Mm
j

SWIF−−−→ 0m.

Pf: Take Z = Mj , ϕj = id , A = ϕj#[[Mm
j ]], and B = 0. �

In Lecture 3: this notation will be explained and this definition will
be made rigorous using Ambrosio-Kirchheim Theory.
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SWIF Compactness Theorems

Thm [SW]: If Mj
GH−→ MGH and Vol(Mj) ≤ V0 and Vol(∂Mj) ≤ A0

then ∃Mjk
SWIF−−−→ MSWIF where MSWIF ⊂ MGH or MSWIF = 0.

Pf: Gromov ϕj : Mj → Z and Ambrosio-Kirchheim Compactness.

Thm [SW]: If Vol(Mj) ≥ V1 and Riccij ≥ 0 then MSWIF = MGH .

Ilmanen: ∃M3
j with Scalj ≥ 0 and inc many wells with no GH lim.

Wenger Compactness Thm: If Diam(Mj) ≤ D and Vol(Mj) ≤ V

then ∃Mjk
SWIF−−−→ MSWIF where possibly MSWIF = 0.
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IAS Emerging Topic Conjecture [Gromov-S]

Suppose M3
j have Vol(M3

j ) ≤ V and Diam(M3
j ) ≤ D

by [Wenger]: subseq Mj
SWIF−−−→ M∞ possibly 0.

and by [SW]: lim inf j→∞ Vol(Mj) ≥M(M∞).
and by [SW]: If M∞ 6= 0 then it is m-rectifiable.

Conjecture: If in addition we have Scalarj ≥ 0 and MinAj ≥ A
where MinAj = min{Area(Σ) : closed min surfaces Σ ⊂ M3

j }
Then M∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have Mj
VF−−→ M∞:

Volume Preserving Intrinsic Flat Convergence:

Mj
SWIF−−−→ M∞ and limj→∞ Vol(Mj) = M(MSWIF ).

In Lecture 2 we will discuss this conjecture in depth
and related open problems at various levels and
present examples and partial solutions.

In Lectures 3&4 we will rigorously define integral current spaces,
their masses, SWIF and VF convergence,
and techniques for proving the open problems.
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Defns of VF and VADB Convergence
Defn: Volume Preserving Intrinsic Flat Conv: Mj

VF−−→ M∞

if Mj
SWIF−−−→ M∞ and limj→∞ Vol(Mj) = M(MSWIF ).

In Lecture 4: we will learn that VF convergence implies
measured convergence and other strong consequences of this
notion that can be proven using Ambrosio-Kirchheim Theory.

The following theorem enables us to prove VF convergence for
sequences of compact oriented Riemannian manifolds:

Allen-Perales-Sormani: [arXiv:2003.01172]

Mj
VADB−−−−→ M∞ =⇒ Mj

VF−−→ M∞.

Defn: Volume Above Distance Below Conv: Mj
VADB−−−−→ M∞

if Volj(Mj)→ Vol∞(M∞) and ∃D > 0 s.t. Diam(Mj) ≤ D and
∃ C 1 ψj : M∞ → Mj s.t. dj(ψj(p), ψj(q)) ≥ d∞(p, q) ∀p, q ∈ M∞.

Open Question: If Scalj ≥ 0 and Mj
VADB−−−−→ M∞ then

which properties of nonnegative scalar curvature hold on M∞?
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Review of Lecture I Notions of Convergence

Mj
C k

−−→ M∞ =⇒ Mj
C0

−→ M∞ =⇒ Mj
Lip−−→ M∞ =⇒ Mj

GH−→ M∞

Gromov Compactness:

Diam(Mj) ≤ D and Riccij ≥ H =⇒ ∃Mjk
GH−→ MGH

Sormani-Wenger Compactness:

Mj
GH−→ MGH and Vol(Mj) ≤ V =⇒ ∃Mjk

SWIF−−−→ MSWIF ⊂ MGH

Sormani-Wenger, Matveev-Portegies:
Vol(Mj) ≥ V1 and Riccij ≥ H =⇒ MSWIF = MGH

Wenger Compactness:

Diam(Mj) ≤ D and Vol(Mj) ≤ V =⇒ ∃Mjk
SWIF−−−→ MSWIF

Allen-Perales-Sormani:

Mj
Lip−−→ M =⇒ Mj

VADB−−−−→ M =⇒ Mj
VF−−→ M =⇒ Mj

SWIF−−−→ M

Gromov-Sormani IAS Scalar Compactness Conjecture:

Diamj ≤ D, Volj ≤ V , Scalj ≥ 0, MinAj ≥ A =⇒ ∃Mjk
VF−−→ MSWIF
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[Conjectures on Convergence and Scalar arXiv: 2103.10093]

Other papers on SWIF convergence may be found at:
https://sites.google.com/site/intrinsicflatconvergence/

This talk may be downloaded at my website:
https://sites.google.com/site/professorsormani/

.
Feel free to email me with questions: sormanic@gmail.com

Thank you for listening - Christina Sormani


