
Lectures III-IV: Proving Intrinsic Flat Convergence



Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C k , C 0, Lip, and GH Convergence,
Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (F),
Volume Preserving Intrinsic Flat Convergence (VF)
Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE!
Consider: Three Dimensional Manifolds M3

j with Scal ≥ H
and their Limit Spaces M∞

Which Geometric Properties of M3
j with Scal ≥ H

persist on their Limit Spaces M∞?
Which Rigidity Theorems for M3 with Scal ≥ H

have Geometric Stability?
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]

Lectures 3&4: Techniques to Apply to Prove Convergence
See https://sites.google.com/site/intrinsicflatconvergence/
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Volume Preserving Intrinsic Flat VF Convergence

Defn: Mj
VF−−→ M∞ if Mj

F−→ M∞ and Vol(Mj)→ Vol(M∞).

Defn: Mj
F−→ M∞ if dF (Mj ,M∞) = dSWIF (Mj ,M∞)→ 0:
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History of the Flat Norm in Euclidean Space:
Whitney (1957): Flat norm between submanifolds Ni in RN :

|N1 − N2|[ = inf
{

M( A ) + M( B )
}

where A and B are chains

such that A + ∂ B = N1 − N2.

Federer-Fleming (1959): Use Whitney’s definition but now
A and B are currents acting on differential forms, ω, in RN .

They view a submanifold ϕ(Mm) as an m-current ϕ#[[Mm]]:

ϕ#[[Mm]](ω) =

∫
ϕ(Mm)

ω =

∫
Mm

ϕ∗ω where ω is an m-form.

ϕ#[[M]](f dπ1∧· · ·∧dπm) =

∫
M

(f ◦ϕ) d(π1◦ϕ)∧· · ·∧d(πm ◦ϕ).

Given a current T they define ∂T : ∂T (ω) = T (dω) so that:

∂[[Nm]](ω) = [[Nm]](dω) =

∫
N

dω =

∫
∂N
ω = [[∂Nm]](ω)

where d(f dπ1 ∧ · · · ∧ dπm) = df ∧ dπ1 ∧ · · · ∧ dπm.
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History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in RN :

|N1 − N2|[ = inf
{

M( A ) + M( B )
}

such that A + ∂ B = N1 − N2.

Federer-Fleming (1959): Use Whitney’s definition but now
A and B are integral currents acting on diff forms, ω, in RN .

Defn: an integral current, T , is an integer rectifiable current whose
boundary ∂T defined by ∂T (ω) = T (dω) is also integer rectifiable.
where an integer rectifiable current, T , has a countable collection
of pairwise disjoint biLip charts ϕi : Ai → ϕi (Ai ) ⊂ RN and
weights ai ∈ Z such that T (ω) =

∑∞
i=1 ai

∫
Ai
ϕ∗i ω.

Defn: The mass M(T ) = ||T ||(RN) =
∑∞

i=1 |ai |Hm(ϕi (Ai )).
Compactness Thm [FF]: If integral currents Tj have
spt(Tj) ⊂ K compact, and M(Tj) ≤ V and M(∂Tj) ≤ A
then ∃ subseq Tjk and an integral current T∞ s.t. |Tjk −T∞|[ → 0.

Furthermore: ∂Tj
F−→ ∂T∞ and lim inf j→∞M(Tj) ≥M(T∞)

and Tj(ω)→ T∞(ω) for any diff form ω.
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Currents in Metric Spaces:

Federer-Fleming (1959): Currents in RN act on diff forms.
Given a smooth ϕ : Mm → RN , define a current acting on forms:

ϕ#[[M]](f dπ1∧· · ·∧dπm) =

∫
M

(f ◦ϕ) d(π1 ◦ϕ)∧· · ·∧d(πm ◦ϕ).

Given a current T acting on form ω define ∂T : ∂T (ω) = T (dω)
where d(f dπ1 ∧ · · · ∧ dπm) = df ∧ dπ1 ∧ · · · ∧ dπm.

DeGiorgi (1995): For a complete metric space, Z ,
replace diff forms f dπ1 ∧ · · · ∧ dπm with tuples (f , π1, ....πm)
s.t. f : Z → R is bounded Lipschitz and πi : Z → R are Lipschitz.
Given a Lipschitz ϕ : Mm → Z , define a current acting on tuples:

ϕ#[[M]](f , π1, ..., πm) =

∫
M

(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

Given a current T acting on a tuple ω define ∂T (ω) = T (dω)
where d(f , π1, ....πm) = (1, f , π1, ..., πm).
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∞∑
i=1
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(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

of finite weighted volume:
∑∞

i=1 |ai |Hm(ϕi (Ai )) <∞.
Mass is not the weighted volume in Ambrosio-Kirchheim Theory!
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Defn [AK]: The mass M(T ) = ||T ||(Z )
where ||T || = µT is the mass measure of T

which is the smallest measure µ s.t.

|ϕ#[[M]](fdπ1 ∧ · · · ∧ dπm) | ≤ Πm
i=1Lip(πi )

∫
ϕ(M)

|f ◦ ϕ|µ

Thm [AK]: The mass measure ||T || = λ θ (Hm setT )
where θ(p) = |ai | if p ∈ ϕi (Ai ) and λ(p) ∈ [cm,Cm] and

set(T ) = {z ∈ Z | lim inf
r→0

||T ||(B(z , r))/rm > 0}.
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Ambrosio-Kirchheim Compactness Theorem:
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Sormani-Wenger: Intrinsic Flat Distance
The intrinsic flat distance between oriented manifolds Mm

i is:

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#[[Mm

1 ]], ϕ2#[[Mm
2 ]]) | ϕi : Mm

i → Z
}

where the infimum is taken over all complete metric spaces, Z ,
and over all distance preserving maps ϕi : Mm

i → Z .

dZ
F (ϕ1#[[Mm

1 ]], ϕ2#[[Mm
2 ]]) is the inf over integral currents A B

= inf

{
M
area

( A ) + M
vol

( B ) : A + ∂ B = ϕ1#[[Mm
1 ]]− ϕ2#[[Mm

2 ]]

}

Recall: integral currents act on tuples of Lip fnctns (f , π1, ....πm)
ϕ#[[M]](f , π1, ..., πm) =

∫
M(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

and ∂B(ω) = B(dω) where d(f , π1, ....πm) = (1, f , π1, ..., πm).

Thm [SW-JDG]: If Mi are compact and dSWIF (M1,M2) = 0
then ∃ orientation preserving isometry F : M1 → M2.

Pf: ∃ϕi : Mi → Z s.t. ϕ1#[[M1]] = ϕ2#[[M2]]. Let F = ϕ−12 ◦ ϕ1.

Next: We need to define the SWIF limit spaces!
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SWIF Limits: Integral Current Spaces
A sequence of compact Riemannian manifolds
can converge in the intrinsic flat (SWIF) sense to
the following limit which is an integral current space:

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable
(which means it has countably many bi-Lipschitz charts
of the same dimension m as the original sequence)
and it has a well defined (m-1)-rectifiable boundary.
The charts are oriented and have integer valued weights, θ,

Now we can truly define integral current spaces.
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SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000): an integral current, T , on Z is an
integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T , has cntbly many pairwise
disjoint biLip charts ϕi : Ai → ϕi (Ai ) ⊂ Z and weights ai ∈ Z s.t.

T (f , π1, ..., πm) =
∞∑
i=1

ai

∫
Ai

(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

with mass M(T ) = ||T ||(Z ) where ||T || = λ θ (Hm setT ) and

set(T ) = {z ∈ Z | lim inf
r→0

||T ||(B(z , r))/rm > 0}.

Key Idea: Integral currents generalize oriented submanifolds in Z .
Key New Idea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X , d ,T )
is a metric space (X , d) and integral current T s.t. set(T ) = X .
Furthermore: M(M) = M(T ) and ∂M = (set(∂T ), d , ∂T ).
Thus X is cntbly Hm rectifiable: it has cntbly many pairwise
disjoint Lip charts ϕi : Ai → X s.t. Hm (X \

⋃∞
i=1 ϕi (Ai )) = 0.
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Oriented Riemannian Mnflds and Integral Current Spaces
An oriented Riemannian mnfld (Mm, g) is a metric space (M, dM)

with a smooth collection of charts
dM(p, q) = inf{Lg (C ) : C : [0, 1]→ M, C (0) = p, C (1) = q}

where Lg (C ) =

∫ 1

0
g(C ′(s),C ′(s))1/2 ds

Vol(U) = Hm(U) is the Hausdorff measure.
An integral current space M = (X , d ,T ) is a metric space (X , d)

and integral current T s.t. set(T ) = X where

set(T ) = {z ∈ Z | lim inf
r→0

||T ||(B(z , r))/rm > 0}

So it has a countable collection of biLipschitz charts
that are oriented and weighted by θ : M → Z

The mass M(U) = ||T ||(U) has ||T || = θλHm.
It might not be connected and might not have any geodesics.

Its boundary is ∂M = (set(∂T ), dM , ∂T ).

A compact oriented manifold (Mm, g) is an integral current space
(M, dM , [[M]]) with weight θ = 1 and M(U) = Vol(U) = Hm(U).

Its boundary (∂M, dM , [[∂M]]) has the restricted distance dM .
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Sormani-Wenger: Intrinsic Flat Distance
between integral current spaces Mm

i = (Xi , di ,Ti ) is:

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#T1, ϕ2#T2) | ϕi : Mm

i → Z
}

where ϕ#T (f , π1, ..., πm) = T (f ◦ ϕ, π1 ◦ ϕ, ..., πm ◦ ϕ),

and
where the infimum is taken over all complete metric spaces, Z ,

and over all distance preserving maps ϕi : Mm
i → Z .

Here: dZ
F (ϕ1#T1, ϕ2#T2) is the Federer-Fleming Flat dist

= inf

{
M
area

( A ) + M
vol

( B ) : A + ∂ B = ϕ1#T1 − ϕ2#T2

}
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Thm [SW-JDG]: If Mi are compact and dSWIF (M1,M2) = 0
then ∃ a current preserving isometry F : M1 → M2:

d2(F (p),F (q)) = d1(p, q) ∀p, q ∈ X1 and F#T1 = T2.

Pf: Show inf achieved: ∃ϕi : Mi → Z s.t. ϕ1#T1 = ϕ2#T2.
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The zero space 0m = (∅, 0, 0) is an integral current space

dSWIF (Mm
1 , 0

m) = inf
{

dZ
F (ϕ1#T1, ϕ2#0) | ϕi : Mm

i → Z
}

where the infimum is taken over all complete metric spaces, Z ,
and over all dist. pres. maps ϕi : Mm

i → Z . (ϕ1 trivial)

Here: dZ
F (ϕ1#T1, ϕ2#0) is the Federer-Fleming Flat dist

= inf
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M
area
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vol

( B ) : A + ∂ B = ϕ1#T1 − ϕ2#0
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Thm [SW]: If M Riemannian then dSWIF (Mm, 0m) ≤ Vol(M).

Pf: Take Z = M, ϕ1 = id , A = id#[[M]] = [[M]], and B = 0. �

Example: dSWIF (Sm, 0m) ≤ Vol(Sm+1)/2.

Pf: Take Z = Sm+1 so ϕ1 : Sm → Equator ⊂ Sm+1 is dist pres.
(Note Z = Dm+1 fails to have dist. pres ϕ1 : Sm → Z ).
Take B = [[Sm+1

+ ]] so ∂ B = ϕ1#[[Sm]] and A = 0. �
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Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#T1, ϕ2#T2) | ϕi : Mm

i → Z
}

where the inf over complete Z and dist. pres. ϕi : Mm
i → Z .

Thm: The infimum is achieved, so we can choose
Z ′ = set(A) ∪ set(B) which is separable and rectifiable.

Thm: If Mj = (Xj , dj ,Tj)
SWIF−−−→ M0 = (X0, d0,T0)

then ∃Z ′j s.t. dSWIF (Mj ,M0) = d
Z ′
j

F (ϕj#Tj , ϕ0,j#T0)
which we can glue along the images ϕ0,j(M0) to show

∃ complete separable Z and dist. pres. ϕj : Xj → Z
s.t. dZ

F (ϕj#Tj , ϕ0#T0)→ 0 and ϕj#Tj(ω)→ ϕ0#T0(ω).

Thus by Ambrosio-Kirchheim Theory:

Mj
SWIF−−−→ M∞ =⇒ ∂Mj

SWIF−−−→ ∂M∞

Mj
SWIF−−−→ M∞ =⇒ lim inf j→∞M(Mj) ≥M(M∞)
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then ∃Z ′j s.t. dSWIF (Mj ,M0) = d
Z ′
j

F (ϕj#Tj , ϕ0,j#T0)
which we can glue along the images ϕ0,j(M0) to show

∃ complete separable Z and dist. pres. ϕj : Xj → Z
s.t. dZ

F (ϕj#Tj , ϕ0#T0)→ 0 and ϕj#Tj(ω)→ ϕ0#T0(ω).

Thus by Ambrosio-Kirchheim Theory:

Mj
SWIF−−−→ M∞ =⇒ ∂Mj

SWIF−−−→ ∂M∞

Mj
SWIF−−−→ M∞ =⇒ lim inf j→∞M(Mj) ≥M(M∞)



SWIF Compactness Theorems
Thm [SW]: If Mj

GH−→ MGH and Vol(Mj) ≤ V0 and Vol(∂Mj) ≤ A0

then ∃Mjk
SWIF−−−→ MSWIF where MSWIF ⊂ MGH or MSWIF = 0.

Proof: By Gromov’s Compactness Thm, ∃ compact Z and
dist pres maps ϕj : Mj → Z s.t. dZ

H (ϕj(Mj), ϕGH(MGH))→ 0.
By Ambrosio-Kirchheim Compactness: ∃ subseq ϕj#Tj → T∞.
set(T∞) ⊂ ϕGH(MGH) ⊂ Z . Let MSWIF = (set(T∞), dZ ,T∞) �.
Wenger Compactness Thm: If Diam(Mj) ≤ D and M(Mj) ≤ V

and M(∂Mj) ≤ A0 then ∃Mjk
SWIF−−−→ MSWIF possibly MSWIF = 0.

How do we know which regions disappear? Use Filling Volumes!
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Adapting Gromov’s Filling Volume [Portegies-Sormani]:

FillVol(Mm) = inf
{

M(Nn+1) | ∂Nn+1 = Mm
}

where the inf is over integral current spaces Nn+1 = (XN , dN ,TN)
such that ∃ current preserving isometry F : Mm → ∂Nn+1.

Recall ∂N = (set(∂TN), dN , ∂TN) has the restricted distance dN

so dN(F (p),F (q)) = dM(p, q) ∀p, q ∈ XM and F#∂TN = TM .

Example: FillVol((Sm, dSm , [[Sm]])) ≤ Vol(Sm+1)/2.

Pf: Take N = Sm+1
+ so F : Sm → Equator ⊂ Sm+1

+ is dist pres �

Open: Is FillVol((Sm, dSm , [[Sm]])) = Vol(Sm+1)/2? Pu Conj

Example: FillVol((Sm, dDm+1 , [[Sm]])) ≤ Vol(Dm+1).

Pf: Take N = Dm+1
+ so F : Sm → ∂Dm+1 ⊂ Dm+1 is dist pres �

Thm: If B(p, r) is a ball in an integral current space M then for
a.e. r > 0 (B(p, r), dM , [[B(p, r)]]) is an integral current space and
so is ∂(B(p, r), dM , [[B(p, r)]]) = (∂B(p, r), dM , [[∂B(p, r)]]), and

FillVol((∂(B(p, r), dM , [[B(p, r)]])) ≤M(B(p, r)).
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Filling Volumes and Balls [Portegies-Sormani]:

FillVol(Mm) = inf
{

M(Nn+1) | ∂Nn+1 = Mm
}

where the inf is over integral current spaces Nn+1 = (XN , dN ,TN)
such that ∃ current preserving isometry F : Mm → ∂Nn+1.

Recall ∂N = (set(∂TN), dN , ∂TN) has the restricted distance dN

so dN(F (p),F (q)) = dM(p, q) ∀p, q ∈ XM and F#∂TN = TM .

Thm: If B(p, r) is a ball in an integral current space M then for
a.e. r > 0 (B(p, r), dM , [[B(p, r)]]) is an integral current space and
so is ∂(B(p, r), dM , [[B(p, r)]]) = (∂B(p, r), dM , [[∂B(p, r)]]), and

FillVol((∂(B(p, r), dM , [[B(p, r)]])) ≤M(B(p, r)).

Recall: p ∈ set(T ) if lim infr→0 M(B(p, r))/rm > 0.
Coro: p ∈ set(T ) if lim infr→0 FillVol(∂B(p, r))/rm > 0.
This corollary was applied by S-Wenger Matveev-Portegies to prove
Thm: MGH = MSWIF for Mj with Vol(Mj) ≥ V and Ricci ≥ H.
Pf: Perelman Colding Gv: ∃Cm

H,V s.t. FillVol(∂B(p, r)) ≥ Cm
V ,H rm.

combined with Corollary above and Portegies-Sormani (next slide)

which says Bj
SWIF−−−→ B∞ =⇒ FillVol(∂Bj)→ FillVol(∂B∞). �
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Filling Volumes and SWIF Limits [Portegies-Sormani]:
Thm: Mm

j
SWIF−−−→ Mm

∞ =⇒ FillVol(∂Mm
j )→ FillVol(∂Mm

∞).

Proof: We need only show that for any fixed ε > 0

FillVol(∂Mm
1 ) ≤ dSWIF (Mm

1 ,M
m
2 ) + FillVol(∂Mm

2 ) + ε.

1. 2. 3. 4.

1. By defn: ∃ϕi : Xi → Z and A + ∂B = ϕ1#T1 − ϕ2#T2 s.t.
M(A) + M(B) ≤ dSWIF (Mm

1 ,M
m
2 ) + ε/2.

2. ∂A = ∂ϕ1#T1 − ∂ϕ2#T2 − ∂∂B = ϕ1#∂T1 − ϕ2#∂T2.

Let Nm
1 = (set(A), dZ ,A) so ϕi : ∂Mi → ∂N1 ⊂ Z .

3. By defn of FillVol: ∃Nm
2 with ∂Nm

2 = ∂Mm
2 such that

M(Nm
2 ) ≤ FillVol(∂Mm

2 ) + ε/2.

4. Glue Nm
1 to Nm

2 along ∂Mm
2 to obtain Nm

1,2 s.t. ∂Nm
1,2 = ∂Mm

1

M(N1,2) ≤M(Nm
1 )+M(Nm

2 ) ≤ dSWIF (M1,M2)+FillVol(∂Mm
2 )+ε.
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Allen-Perales-Sormani VADB
Allen-Perales-Sormani: [arXiv:2003.01172]
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VF−−→ M∞.

Defn: Volume Above Distance Below Conv: Mj
VADB−−−−→ M∞

if Volj(Mj)→ Vol∞(M∞) and ∃D > 0 s.t. Diam(Mj) ≤ D
and ∃ C 1 diffeomorphismψj : M∞ → Mj such that

dj(ψj(p), ψj(q)) ≥ d∞(p, q) ∀p, q ∈ M∞.

An earlier theorem that inspired us:
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Egoroff’s Theorem? But Egoroff’s Theorem only gives
a set S ∈ M ×M controlling d(p, q) uniformly ∀(p, q) ∈ S ...
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Allen-Perales-Sormani Ptwise to Uniform on W ⊂ M

and |dj(p, q)− d0(p, q)| < δε,j ∀p, q ∈WK ,ε



Allen-Perales-Sormani VADB to VF is Proven

and |dj(p, q)− d0(p, q)| < δε,j ∀p, q ∈WK ,ε

combined with our estimate on SWIF:

completes the proof of Mj
VADB−−−−→ M∞ =⇒ Mj

VF−−→ M∞. �



SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000): an integral current, T , on Z is an
integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T , has cntbly many pairwise
disjoint biLip charts ϕi : Ai → ϕi (Ai ) ⊂ Z and weights ai ∈ Z s.t.

T (f , π1, ..., πm) =
∞∑
i=1

ai

∫
Ai

(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

with mass M(T ) = ||T ||(Z ) where ||T || = λ θ (Hm setT ) and

set(T ) = {z ∈ Z | lim inf
r→0

||T ||(B(z , r))/rm > 0}.

Key Idea: Integral currents generalize oriented submanifolds in Z .
Key New Idea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X , d ,T )
is a metric space (X , d) and integral current T s.t. set(T ) = X .
Furthermore: M(M) = M(T ) and ∂M = (set(∂T ), d , ∂T ).
Thus X is cntbly Hm rectifiable: it has cntbly many pairwise
disjoint Lip charts ϕi : Ai → X s.t. Hm (X \

⋃∞
i=1 ϕi (Ai )) = 0.
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Oriented Riemannian Mnflds and Integral Current Spaces
An oriented Riemannian mnfld (Mm, g) is a metric space (M, dM)

with a smooth collection of charts
dM(p, q) = inf{Lg (C ) : C : [0, 1]→ M, C (0) = p, C (1) = q}

where Lg (C ) =

∫ 1

0
g(C ′(s),C ′(s))1/2 ds

Vol(U) = Hm(U) is the Hausdorff measure.
An integral current space M = (X , d ,T ) is a metric space (X , d)

and integral current T s.t. set(T ) = X where

set(T ) = {z ∈ Z | lim inf
r→0

||T ||(B(z , r))/rm > 0}

So it has a countable collection of biLipschitz charts
that are oriented and weighted by θ : M → Z

The mass M(U) = ||T ||(U) has ||T || = θλHm.
It might not be connected and might not have any geodesics.

Its boundary is ∂M = (set(∂T ), d , ∂T ).

A compact oriented manifold (Mm, g) is an integral current space
(M, dM , [[M]]) with weight θ = 1 and M(U) = Vol(U) = Hm(U).

Its boundary (∂M, dM , [[∂M]]) has the restricted distance dM .
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Sormani-Wenger: Intrinsic Flat Distance
between integral current spaces Mm

i = (Xi , di ,Ti ) is:

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#T1, ϕ2#T2) | ϕi : Mm

i → Z
}

where ϕ#T (f , π1, ..., πm) = T (f ◦ ϕ, π1 ◦ ϕ, ..., πm ◦ ϕ),

and
where the infimum is taken over all complete metric spaces, Z ,

and over all distance preserving maps ϕi : Mm
i → Z .

Here: dZ
F (ϕ1#T1, ϕ2#T2) is the Federer-Fleming Flat dist

= inf

{
M
area

( A ) + M
vol

( B ) : A + ∂ B = ϕ1#T1 − ϕ2#T2

}
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Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

dSWIF (Mm
1 ,M

m
2 ) = inf

{
dZ
F (ϕ1#T1, ϕ2#T2) | ϕi : Mm

i → Z
}

where the inf over complete Z and dist. pres. ϕi : Mm
i → Z .

Thm: The infimum is achieved, so we can choose
Z ′ = set(A) ∪ set(B) which is separable and rectifiable.

Thm: If Mj = (Xj , dj ,Tj)
SWIF−−−→ M0 = (X0, d0,T0)

∃ complete separable Z and dist. pres. ϕj : Xj → Z
s.t. dZ

F (ϕj#Tj , ϕ0#T0)→ 0 and ϕj#Tj(ω)→ ϕ0#T0(ω).

Thus by Ambrosio-Kirchheim Theory:

Mj
SWIF−−−→ M∞ =⇒ ∂Mj

SWIF−−−→ ∂M∞

Mj
SWIF−−−→ M∞ =⇒ lim inf j→∞M(Mj) ≥M(M∞)

Thm [Sor-ArzAsc]: For any p ∈ M∞ there exists pj ∈ Mj s.t.
dZ (ϕj(pj), ϕ∞(p))→ 0.
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Arzela-Ascoli Theorem



Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If B(p, r) is a ball in an integral current space M then
(B(p, r), dM , [[B(p, r)]]) is an integral current space for a.e. r > 0.

Thm [SW]: If Mj = (Xj , dj ,Tj)
SWIF−−−→ M0 = (x0, d0,T0)

∃ complete separable Z and dist. pres. ϕj : Xj → Z such that
dZ
F (ϕj#Tj , ϕ0#T0)→ 0 and ϕj#Tj(ω)→ ϕ0#T0(ω).

Thm: If p0 ∈ M0 and Mj
SWIF−−−→ M0, then

∃pj ∈ Mj such that dZ (ϕj(pj), ϕ0(p0))→ 0.
Furthermore: For a.e. r > 0 ∃ subsequence jk such that

(B(pjk , r), dM , [[B(pjk , r)]])
SWIF−−−→ (B(p0, r), dM , [[B(p0, r)]]).

Coro: lim inf j→∞M(B(pj , r)) ≥M(B(p0, r)).
Coro: ∂B(pj , r)→ ∂B(p0, r).
Coro: FillVol(∂B(pj , r))→ FillVol(∂B(p0, r)).
Coro: Diam(M0) ≤ lim inf j→∞Diam(Mj).

Thm: If Mm
j

SWIF−−−→ MSWIF 6= 0m then ∃Nj ⊂ Mj such that

Nj
GH−→ MSWIF and lim inf j→∞M(Nj) ≥M(MSWIF ).

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
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Ambrosio-Kirchheim Slicing Theorem:
Given Lipschitz, f : Z → R, and integral current, T , for a.e. s ∈ R
one can define the slice of T by f at s which is an integral current

< T , f , s >:= −∂
(
T f −1(s,∞)

)
+ (∂T ) f −1(s,∞),

where S restricted to U is (S U)(h, π1, ...) = S(χU · h, π1, ...).

To prove it is an integral current, they prove its mass and the mass
of ∂ < T , f , s >=< −∂T , f , s > is finite for a.e. s ∈ R. In fact:∫

s∈R
M(< T , f , s >) ds = M(T df ) ≤ Lip(f ) M(T )

where (T df )(h, π1, ..., πm−1) = T (h, f , π1, ...πm−1).
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where dZ
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Convergence of Slices
If dZ

F (Tj ,T∞)→ 0 and f : Z → R has Lip(f ) ≤ 1 then∫
s∈R

dZ
F (< Tj , f , s >,< T∞, f , s >) ds → 0.

So a.e. s ∈ R ∃ subseq s.t. dZ
F (< Tj , f , s >,< T∞, f , s >)→ 0.

What about slices of converging integral current spaces
where Slice((X , d ,T ), f , s) = (set(< T , f , s >), d , < T , f , s >)?

(Xj , dj ,Tj)
SWIF−−−→ (X∞, d∞,T∞) implies

∃Z and ϕj : Xj → Z s.t. dZ
F (ϕj#Tj

, ϕ∞#T∞)→ 0.
Taking fj = f ◦ ϕj we get subseq of sliced spaces for a.e. s ∈ R:

Slice(Mj , fj , s)
SWIF−−−→ Slice(M∞, f∞, s∞).

Portegies-Sormani: (after significant work) Mj
SWIF−−−→ M∞

and pj ∈ Mj converges to p∞ ∈ M∞ then a.e. s ∈ R:

a subseq Slice(Mj , ρpj , s)
SWIF−−−→ Slice(M∞, ρp∞ , s∞)

So B(pj , s)
SWIF−−−→ B(p∞, s) and ∂B(pj , s)

SWIF−−−→ ∂B(p∞, s).
[PS] also define a sliced filling volume and estimate it.
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Balls and VF Limits

Portegies-Sormani: (from last slide) Mj
SWIF−−−→ M∞

and pj ∈ Mj converges to p∞ ∈ M∞ then a.e. s ∈ R:

a subseq Slice(Mj , ρpj , s)
SWIF−−−→ Slice(M∞, ρp∞ , s∞).

So B(pj , s)
SWIF−−−→ B(p∞, s) and ∂B(pj , s)

SWIF−−−→ ∂B(p∞, s).

So lim inf j→∞M(B(pj , s)) ≥M(B(p∞, s)) and
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IAS Emerging Topic Conjecture [Gromov-S]
Suppose M3

j have Vol(M3
j ) ≤ V and Diam(M3

j ) ≤ D

by [Wenger]: subseq Mj
SWIF−−−→ M∞ possibly 0.

and by [SW]: lim inf j→∞ Vol(Mj) ≥M(M∞).
and by [SW]: If M∞ 6= 0 then it is m-rectifiable.

Conjecture: If in addition we have Scalarj ≥ 0 and MinAj ≥ A
where MinAj = min{Area(Σ) : closed min surfaces Σ ⊂ M3

j }
Then M∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have Mj
VF−−→ M∞ where

M∞ is a connected length space with Euclidean tangent cones.
How can we show M∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints,
but for SWIF limits midpoints might disappear....
Given p, q ∈ M∞, ∃pj , qj ∈ Mj converging to p, q.
Taking xj to be a midpoint between pj and qj ,
can we show FillVol(B(xj , r)) ≥ CV ,D,Ar3? OPEN.
We must use xj a midpoint because other points can disappear.
Perhaps use sliced filling volumes with fj(·) = dj(·, pj)? OPEN
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IAS Emerging Topic Conjecture: Tan Cones

Suppose M3
j have Vol(M3

j ) ≤ V and Diam(M3
j ) ≤ D

So a subsequence Mj
SWIF−−−→ M∞.

Conjecture: If in addition we have Scalarj ≥ 0 and MinAj ≥ A
where MinAj = min{Area(Σ) : closed min surfaces Σ ⊂ M3

j }
Then M∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have Mj
VF−−→ M∞ where

M∞ is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?
By Ambrosio-Kirchheim theory, we know that at a.e. p ∈ M∞,
there is a tangent cone, TpM, which is a normed vector space:

(B(p, ri ), d/ri , [[B(p, ri )]])
SWIF−−−→ B(0, 1) ⊂ TpM.

So perhaps we could use geometric stability of a rigidity theorem
that implies a ball is a Euclidean ball to prove this.
Note that λ(p) = 1 if TpM is Euclidean, so ||T∞|| = 1 · θ ·H3.
Conjecture: the weight θ = 1. So ||T∞|| = H3.
Open: Prove ||T∞|| = H3. (Ricci case by Colding ”Volumes....).
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