

Intrinsic Flat and Gromov-Hausdorff Convergence

Christina Sormani

CUNY GC and Lehman College

Lectures III-IV: Proving Intrinsic Flat Convergence

Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C^{k}, C^{0}, Lip, and GH Convergence, Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}),
Volume Preserving Intrinsic Flat Convergence ($\mathcal{V F}$)
Allen-Perales-Sormani (VADB) Convergence

Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C^{k}, C^{0}, Lip, and GH Convergence,
Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}),
Volume Preserving Intrinsic Flat Convergence ($\mathcal{V F}$)
Allen-Perales-Sormani (VADB) Convergence
Lecture 2: Open Problems on Scalar Curvature DONE!
Consider: Three Dimensional Manifolds M_{j}^{3} with Scal $\geq H$ and their Limit Spaces M_{∞}
Which Geometric Properties of M_{j}^{3} with Scal $\geq H$
persist on their Limit Spaces M_{∞} ?
Which Rigidity Theorems for M^{3} with Scal $\geq H$
have Geometric Stability?
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]

Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C^{k}, C^{0}, Lip, and GH Convergence, Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}),
Volume Preserving Intrinsic Flat Convergence ($\mathcal{V F}$) Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE!
Consider: Three Dimensional Manifolds M_{j}^{3} with Scal $\geq H$ and their Limit Spaces M_{∞}
Which Geometric Properties of M_{j}^{3} with Scal $\geq H$
persist on their Limit Spaces M_{∞} ?
Which Rigidity Theorems for M^{3} with Scal $\geq H$
have Geometric Stability?
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]
Lectures 3\&4: Techniques to Apply to Prove Convergence See https://sites.google.com/site/intrinsicflatconvergence/

Volume Preserving Intrinsic Flat $\mathcal{V \mathcal { F }}$ Convergence

Volume Preserving Intrinsic Flat $\mathcal{V} \mathcal{F}$ Convergence Defn: $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ if $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ and $\operatorname{Vol}\left(M_{j}\right) \rightarrow \operatorname{Vol}\left(M_{\infty}\right)$.

Volume Preserving Intrinsic Flat $\mathcal{V} \mathcal{F}$ Convergence

Defn: $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ if $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ and $\operatorname{Vol}\left(M_{j}\right) \rightarrow \operatorname{Vol}\left(M_{\infty}\right)$. Defn: $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ if $d_{\mathcal{F}}\left(M_{j}, M_{\infty}\right)=d_{S W I F}\left(M_{j}, M_{\infty}\right) \rightarrow 0$:

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is: $d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$ where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the Federer-Fleming Flat dist $=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(A)+\mathbf{M}(B)\}$ where A and B are chains such that $A+\partial B=N_{1}-N_{2}$.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
where A and B are chains
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:

$$
\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega=\int_{M^{m}} \varphi^{*} \omega \text { where } \omega \text { is an } m \text {-form. }
$$

$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
where A and B are chains
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}.
They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:
$\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega=\int_{M^{m}} \varphi^{*} \omega$ where ω is an m-form.
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
where A and B are chains
such that $\mathrm{A}+\partial \mathrm{B}=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:
$\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega=\int_{M^{m}} \varphi^{*} \omega$ where ω is an m-form.
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi)$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
where A and B are chains
such that $\mathrm{A}+\partial \mathrm{B}=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:

$$
\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega=\int_{M^{m}} \varphi^{*} \omega \text { where } \omega \text { is an } m \text {-form. }
$$

$$
\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$ where A and B are chains such that $\mathrm{A}+\partial \mathrm{B}=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:

$$
\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega=\int_{M^{m}} \varphi^{*} \omega \text { where } \omega \text { is an } m \text {-form. }
$$

$$
\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T they define $\partial T: \partial T(\omega)=T(d \omega)$ so that:

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$ where A and B are chains such that $\mathrm{A}+\partial \mathrm{B}=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:

$$
\begin{aligned}
\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega & =\int_{M^{m}} \varphi^{*} \omega \text { where } \omega \text { is an } m \text {-form. } \\
\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right) & =\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right) .
\end{aligned}
$$

Given a current T they define $\partial T: \partial T(\omega)=T(d \omega)$ so that:

$$
\partial\left[\left[N^{m}\right]\right](\omega)=\left[\left[N^{m}\right]\right](d \omega)=\int_{N} d \omega=\int_{\partial N} \omega=\left[\left[\partial N^{m}\right]\right](\omega)
$$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_{i} in \mathbb{R}^{N} :
$\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$ where A and B are chains such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^{N}. They view a submanifold $\varphi\left(M^{m}\right)$ as an m-current $\varphi_{\#}\left[\left[M^{m}\right]\right]$:

$$
\begin{aligned}
\varphi_{\#}\left[\left[M^{m}\right]\right](\omega)=\int_{\varphi\left(M^{m}\right)} \omega & =\int_{M^{m}} \varphi^{*} \omega \text { where } \omega \text { is an } m \text {-form. } \\
\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right) & =\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right) .
\end{aligned}
$$

Given a current T they define $\partial T: \partial T(\omega)=T(d \omega)$ so that:

$$
\partial\left[\left[N^{m}\right]\right](\omega)=\left[\left[N^{m}\right]\right](d \omega)=\int_{N} d \omega=\int_{\partial N} \omega=\left[\left[\partial N^{m}\right]\right](\omega)
$$

where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \Delta d \pi_{m}$,

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$ such that $A+\partial B=N_{1}-N_{2}$.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $\mathrm{A}+\partial \mathrm{B}=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$.
Defn: The mass $\mathbf{M}(T)=\|T\|\left(\mathbb{R}^{N}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)$.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$. Defn: The mass $\mathbf{M}(T)=\|T\|\left(\mathbb{R}^{N}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)$. Compactness Thm [FF]: If integral currents T_{j} have $\operatorname{spt}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $\left|T_{j_{k}}-T_{\infty}\right|_{b} \rightarrow 0$.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$.
Defn: The mass $\mathbf{M}(T)=\|T\|\left(\mathbb{R}^{N}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)$.
Compactness Thm [FF]: If integral currents T_{j} have $\operatorname{spt}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $\left|T_{j_{k}}-T_{\infty}\right|_{b} \rightarrow 0$.
Furthermore: $\partial T_{j} \xrightarrow{\mathcal{F}} \partial T_{\infty}$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$.
Defn: The mass $\mathbf{M}(T)=\|T\|\left(\mathbb{R}^{N}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)$. Compactness Thm [FF]: If integral currents T_{j} have $\operatorname{spt}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $\left|T_{j_{k}}-T_{\infty}\right|_{b} \rightarrow 0$.
Furthermore: $\partial T_{j} \xrightarrow{\mathcal{F}} \partial T_{\infty}$ and ${\lim \inf _{j \rightarrow \infty}}^{\mathbf{M}}\left(T_{j}\right) \geq \mathbf{M}\left(T_{\infty}\right)$

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^{N} : $\left|N_{1}-N_{2}\right|_{b}=\inf \{\mathbf{M}(\mathrm{A})+\mathbf{M}(\mathrm{B})\}$
such that $A+\partial B=N_{1}-N_{2}$.

Federer-Fleming (1959): Use Whitney's definition but now
A and B are integral currents acting on diff forms, ω, in \mathbb{R}^{N}. Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega)=T(d \omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset \mathbb{R}^{N}$ and weights $a_{i} \in \mathbb{Z}$ such that $T(\omega)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}} \varphi_{i}^{*} \omega$.
Defn: The mass $\mathbf{M}(T)=\|T\|\left(\mathbb{R}^{N}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)$. Compactness Thm [FF]: If integral currents T_{j} have $\operatorname{spt}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $\left|T_{j_{k}}-T_{\infty}\right|_{b} \rightarrow 0$.
Furthermore: $\partial T_{j} \xrightarrow{\mathcal{F}} \partial T_{\infty}$ and $\liminf _{j \rightarrow \infty} \mathbf{M}\left(T_{j}\right) \geq \mathbf{M}\left(T_{\infty}\right)$ and $T_{j}(\omega) \rightarrow T_{\infty}(\omega)$ for any diff form ω.

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z,

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz.

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=
$$

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms. Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms.
Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=$

Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^{N} act on diff forms.
Given a smooth $\varphi: M^{m} \rightarrow \mathbb{R}^{N}$, define a current acting on forms:
$\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$.
Given a current T acting on form ω define $\partial T: \partial T(\omega)=T(d \omega)$ where $d\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)=d f \wedge d \pi_{1} \wedge \cdots \wedge d \pi_{m}$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$

$$
\text { where } d\left(f, \pi_{1}, \ldots \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)
$$

Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z,
replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$
s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.

Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z,
replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$
s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z,
replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$
s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z,
replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$
s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.

Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d \pi_{1} \wedge \cdots \wedge d \pi_{m}$ with tuples $\left(f, \pi_{1}, \ldots \pi_{m}\right)$ s.t. $f: Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_{i}: Z \rightarrow \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^{m} \rightarrow Z$, define a current acting on tuples:

$$
\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

Given a current T acting on a tuple ω define $\partial T(\omega)=T(d \omega)$ where $d\left(f, \pi_{1}, \ldots \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Mass is not the weighted volume in Ambrosio-Kirchheim Theory!

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T which is the smallest measure μ s.t.

$$
\left|\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)\right| \leq \Pi_{i=1}^{m} \operatorname{Lip}\left(\pi_{i}\right) \int_{\varphi(M)}|f \circ \varphi| \mu
$$

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T which is the smallest measure μ s.t.

$$
\left|\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)\right| \leq \Pi_{i=1}^{m} \operatorname{Lip}\left(\pi_{i}\right) \int_{\varphi(M)}|f \circ \varphi| \mu
$$

Thm [AK]: The mass measure $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T which is the smallest measure μ s.t.

$$
\left|\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)\right| \leq \Pi_{i=1}^{m} \operatorname{Lip}\left(\pi_{i}\right) \int_{\varphi(M)}|f \circ \varphi| \mu
$$

Thm [AK]: The mass measure $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=\left|a_{i}\right|$ if $p \in \varphi_{i}\left(A_{i}\right)$

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T which is the smallest measure μ s.t.

$$
\left|\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)\right| \leq \Pi_{i=1}^{m} L i p\left(\pi_{i}\right) \int_{\varphi(M)}|f \circ \varphi| \mu
$$

Thm [AK]: The mass measure $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=\left|a_{i}\right|$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

of finite weighted volume: $\sum_{i=1}^{\infty}\left|a_{i}\right| \mathcal{H}^{m}\left(\varphi_{i}\left(A_{i}\right)\right)<\infty$.
Defn [AK]: The mass $\mathbf{M}(T)=\|T\|(Z)$
where $\|T\|=\mu_{T}$ is the mass measure of T which is the smallest measure μ s.t.

$$
\left|\varphi_{\#}[[M]]\left(f d \pi_{1} \wedge \cdots \wedge d \pi_{m}\right)\right| \leq \Pi_{i=1}^{m} \operatorname{Lip}\left(\pi_{i}\right) \int_{\varphi(M)}|f \circ \varphi| \mu
$$

Thm [AK]: The mass measure $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=\left|a_{i}\right|$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

They define mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$

$$
\text { where } \theta(p)=a_{i} \text { if } p \in \varphi_{i}\left(A_{i}\right) \text { and } \lambda(p) \in\left[c_{m}, C_{m}\right] \text { and }
$$

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an
integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

They define mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=a_{i}$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Note: $\operatorname{set}(T)$ is cntbly rectifiable: $\mathcal{H}^{m}\left(\operatorname{set}(T) \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

They define mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=a_{i}$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Note: $\operatorname{set}(T)$ is cntbly rectifiable: $\mathcal{H}^{m}\left(\operatorname{set}(T) \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.
Compactness Thm [AK]: If integral currents T_{j} have $\operatorname{set}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $T_{j}(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

They define mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=a_{i}$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Note: $\operatorname{set}(T)$ is cntbly rectifiable: $\mathcal{H}^{m}\left(\operatorname{set}(T) \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.
Compactness Thm [AK]: If integral currents T_{j} have $\operatorname{set}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $T_{j}(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$ and $\partial T_{j}(\eta) \rightarrow \partial T_{\infty}(\eta) \forall \eta$

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

They define mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ where $\theta(p)=a_{i}$ if $p \in \varphi_{i}\left(A_{i}\right)$ and $\lambda(p) \in\left[c_{m}, C_{m}\right]$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Note: $\operatorname{set}(T)$ is cntbly rectifiable: $\mathcal{H}^{m}\left(\operatorname{set}(T) \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.
Compactness Thm [AK]: If integral currents T_{j} have $\operatorname{set}\left(T_{j}\right) \subset K$ compact, and $\mathbf{M}\left(T_{j}\right) \leq V$ and $\mathbf{M}\left(\partial T_{j}\right) \leq A$ then \exists subseq $T_{j_{k}}$ and an integral current T_{∞} s.t. $T_{j}(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$ and $\partial T_{j}(\eta) \rightarrow \partial T_{\infty}(\eta) \forall \eta$ and $\liminf _{j \rightarrow \infty} \mathbf{M}\left(T_{j}\right) \geq \mathbf{M}\left(T_{\infty}\right)$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf:

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$. Let $F=\varphi_{2}^{-1} \circ \varphi_{1}$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$. Let $F=\varphi_{2}^{-1} \circ \varphi_{1}$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$. Let $F=\varphi_{2}^{-1} \circ \varphi_{1}$.
Next: We need to define the SWIF limit spaces!

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$. Let $F=\varphi_{2}^{-1} \circ \varphi_{1}$.
Next: We need to define the SWIF limit spaces!

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is:
$d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$
where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
$d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the inf over integral currents A B
$=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$
Recall: integral currents act on tuples of Lip fnctns $\left(f, \pi_{1}, \ldots . \pi_{m}\right)$ $\varphi_{\#}[[M]]\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\int_{M}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)$ and $\partial B(\omega)=B(d \omega)$ where $d\left(f, \pi_{1}, \ldots . \pi_{m}\right)=\left(1, f, \pi_{1}, \ldots, \pi_{m}\right)$.
Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists orientation preserving isometry $F: M_{1} \rightarrow M_{2}$.
Pf: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#}\left[\left[M_{1}\right]\right]=\varphi_{2 \#}\left[\left[M_{2}\right]\right]$. Let $F=\varphi_{2}^{-1} \circ \varphi_{1}$.
Next: We need to define the SWIF limit spaces!

SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:
Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined ($m-1$)-rectifiable boundary.
The charts are oriented and have integer valued weights, θ,

SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:
Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined ($m-1$)-rectifiable boundary. The charts are oriented and have integer valued weights, θ,

Now we can truly define integral current spaces.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.
Key New Idea: generalize oriented Riemannian Manifolds.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\} .
$$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\} .
$$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.
Furthermore: $\mathbf{M}(M)=\mathbf{M}(T)$ and $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.
Key New Idea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.
Furthermore: $\mathbf{M}(M)=\mathbf{M}(T)$ and $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.
Thus X is cntbly \mathcal{H}^{m} rectifiable: it has cntbly many pairwise disjoint Lip charts $\varphi_{i}: A_{i} \rightarrow X$ s.t. $\mathcal{H}^{m}\left(X \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
\begin{gathered}
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\} \\
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s \\
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
\end{gathered}
$$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
\begin{gathered}
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\} \\
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s \\
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
\end{gathered}
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics. Its boundary is $\partial M=\left(\operatorname{set}(\partial T), d_{M}, \partial T\right)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics. Its boundary is $\partial M=\left(\operatorname{set}(\partial T), d_{M}, \partial T\right)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics.
Its boundary is $\partial M=\left(\operatorname{set}(\partial T), d_{M}, \partial T\right)$.
A compact oriented manifold $\left(M^{m}, g\right)$ is an integral current space $\left(M, d_{M},[[M]]\right)$ with weight $\theta=1$ and $\mathbf{M}(U)=\operatorname{Vol}(U)=\mathcal{H}^{m}(U)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics. Its boundary is $\partial M=\left(\operatorname{set}(\partial T), d_{M}, \partial T\right)$.
A compact oriented manifold $\left(M^{m}, g\right)$ is an integral current space $\left(M, d_{M},[[M]]\right)$ with weight $\theta=1$ and $\mathbf{M}(U)=\operatorname{Vol}(U)=\mathcal{H}^{m}(U)$. Its boundary $\left(\partial M, d_{M},[[\partial M]]\right)$ has the restricted distance d_{M}.

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$,

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): A+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists a current preserving isometry $F: M_{1} \rightarrow M_{2}$:

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists a current preserving isometry $F: M_{1} \rightarrow M_{2}$: $d_{2}(F(p), F(q))=d_{1}(p, q) \forall p, q \in X_{1}$ and $F_{\#} T_{1}=T_{2}$.

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$

$$
\begin{aligned}
& \text { then } \exists \text { a current preserving isometry } F: M_{1} \rightarrow M_{2} \text { : } \\
& d_{2}(F(p), F(q))=d_{1}(p, q) \forall p, q \in X_{1} \text { and } F_{\#} T_{1}=T_{2} .
\end{aligned}
$$

Pf:

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$

$$
\begin{aligned}
& \text { then } \exists \text { a current preserving isometry } F: M_{1} \rightarrow M_{2} \text { : } \\
& d_{2}(F(p), F(q))=d_{1}(p, q) \forall p, q \in X_{1} \text { and } F_{\#} T_{1}=T_{2} .
\end{aligned}
$$

Pf: Show inf achieved: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#} T_{1}=\varphi_{2 \#} T_{2}$.

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists a current preserving isometry $F: M_{1} \rightarrow M_{2}$: $d_{2}(F(p), F(q))=d_{1}(p, q) \forall p, q \in X_{1}$ and $F_{\#} T_{1}=T_{2}$.
Pf: Show inf achieved: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#} T_{1}=\varphi_{2 \#} T_{2}$. So $\operatorname{set}\left(\varphi_{1 \#} T_{1}\right)=\operatorname{set}\left(\varphi_{2 \#} T_{2}\right)$ and $F=\varphi_{2}^{-1} \circ \varphi_{1}$ is defined.

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Thm [SW-JDG]: If M_{i} are compact and $d_{\text {SWIF }}\left(M_{1}, M_{2}\right)=0$ then \exists a current preserving isometry $F: M_{1} \rightarrow M_{2}$: $d_{2}(F(p), F(q))=d_{1}(p, q) \forall p, q \in X_{1}$ and $F_{\#} T_{1}=T_{2}$.
Pf: Show inf achieved: $\exists \varphi_{i}: M_{i} \rightarrow Z$ s.t. $\varphi_{1 \#} T_{1}=\varphi_{2 \#} T_{2}$. So $\operatorname{set}\left(\varphi_{1 \#} T_{1}\right)=\operatorname{set}\left(\varphi_{2 \#} T_{2}\right)$ and $F=\varphi_{2}^{-1} \circ \varphi_{1}$ is defined.

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z .\left(\varphi_{1}\right.$ trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\operatorname{area}}{\mathbf{M}}(\mathrm{A})+\underset{\mathrm{vol}}{\mathbf{M}}(\mathrm{~B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.
Pf: Take $Z=M, \varphi_{1}=i d, \mathrm{~A}=i d_{\#}[[M]]=[[M]]$, and $\mathrm{B}=0$. \square

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.
Pf: Take $Z=M, \varphi_{1}=i d, \mathrm{~A}=i d_{\#}[[M]]=[[M]]$, and $\mathrm{B}=0$. \square
Example: $d_{S W I F}\left(\mathbb{S}^{m}, 0^{m}\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.
Pf: Take $Z=M, \varphi_{1}=i d, \mathrm{~A}=i d_{\#}[[M]]=[[M]]$, and $\mathrm{B}=0$. \square
Example: $d_{S W I F}\left(\mathbb{S}^{m}, 0^{m}\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $Z=\mathbb{S}^{m+1}$ so $\varphi_{1}: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}^{m+1}$ is dist pres.

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.
Pf: Take $Z=M, \varphi_{1}=i d, \mathrm{~A}=i d_{\#}[[M]]=[[M]]$, and $\mathrm{B}=0$. \square
Example: $d_{\text {SWIF }}\left(\mathbb{S}^{m}, 0^{m}\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $Z=\mathbb{S}^{m+1}$ so $\varphi_{1}: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}^{m+1}$ is dist pres.
(Note $Z=\mathbb{D}^{m+1}$ fails to have dist. pres $\varphi_{1}: \mathbb{S}^{m} \rightarrow Z$).

The zero space $0^{m}=(\emptyset, 0,0)$ is an integral current space

$$
d_{S W I F}\left(M_{1}^{m}, 0^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$. (φ_{1} trivial)
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} 0\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathrm{A}+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} 0\right\}
$$

Thm [SW]: If M Riemannian then $d_{\text {SWIF }}\left(M^{m}, 0^{m}\right) \leq \operatorname{Vol}(M)$.
Pf: Take $Z=M, \varphi_{1}=i d, \mathrm{~A}=i d_{\#}[[M]]=[[M]]$, and $\mathrm{B}=0$. \square
Example: $d_{\text {SWIF }}\left(\mathbb{S}^{m}, 0^{m}\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $Z=\mathbb{S}^{m+1}$ so $\varphi_{1}: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}^{m+1}$ is dist pres.
(Note $Z=\mathbb{D}^{m+1}$ fails to have dist. pres $\varphi_{1}: \mathbb{S}^{m} \rightarrow Z$).
Take $\mathrm{B}=\left[\left[\mathbb{S}_{+}^{m+1}\right]\right]$ so $\partial \mathrm{B}=\varphi_{1 \#}\left[\left[\mathbb{S}^{m}\right]\right]$ and $\mathrm{A}=0$.

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose
$Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$ where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.

Thm: The infimum is achieved, so we can choose
$Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose
$Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$ which we can glue along the images $\varphi_{0, j}\left(M_{0}\right)$ to show

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$ which we can glue along the images $\varphi_{0, j}\left(M_{0}\right)$ to show
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$ which we can glue along the images $\varphi_{0, j}\left(M_{0}\right)$ to show
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$ which we can glue along the images $\varphi_{0, j}\left(M_{0}\right)$ to show
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \partial M_{j} \xrightarrow{\text { SWIF }} \partial M_{\infty}
$$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.
Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
then $\exists Z_{j}^{\prime}$ s.t. $d_{\text {SWIF }}\left(M_{j}, M_{0}\right)=d_{F}^{Z_{j}^{\prime}}\left(\varphi_{j \#} T_{j}, \varphi_{0, j \#} T_{0}\right)$ which we can glue along the images $\varphi_{0, j}\left(M_{0}\right)$ to show
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

$$
\begin{aligned}
& M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \partial M_{j} \xrightarrow{\text { SWIF }} \partial M_{\infty} \\
& M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j k} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$. Let $M_{S W I F}=\left(\operatorname{set}\left(T_{\infty}\right), d_{Z}, T_{\infty}\right) \square$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$. Let $M_{S W I F}=\left(\operatorname{set}\left(T_{\infty}\right), d_{Z}, T_{\infty}\right) \square$. Wenger Compactness Thm: If $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\mathbf{M}\left(M_{j}\right) \leq V$ and $\mathbf{M}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ possibly $M_{\text {SWIF }}=0$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$. Let $M_{S W I F}=\left(\operatorname{set}\left(T_{\infty}\right), d_{Z}, T_{\infty}\right) \square$. Wenger Compactness Thm: If $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\mathbf{M}\left(M_{j}\right) \leq V$ and $\mathbf{M}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ possibly $M_{\text {SWIF }}=0$.

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$. Let $M_{S W I F}=\left(\operatorname{set}\left(T_{\infty}\right), d_{Z}, T_{\infty}\right) \square$. Wenger Compactness Thm: If $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\mathbf{M}\left(M_{j}\right) \leq V$ and $\mathbf{M}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ possibly $M_{\text {SWIF }}=0$. How do we know which regions disappear?

SWIF Compactness Theorems

Thm [SW]: If $M_{j} \xrightarrow{\mathrm{GH}} M_{G H}$ and $\operatorname{Vol}\left(M_{j}\right) \leq V_{0}$ and $\operatorname{Vol}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ where $M_{\text {SWIF }} \subset M_{G H}$ or $M_{\text {SWIF }}=0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_{j}: M_{j} \rightarrow Z$ s.t. $d_{H}^{Z}\left(\varphi_{j}\left(M_{j}\right), \varphi_{G H}\left(M_{G H}\right)\right) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j \#} T_{j} \rightarrow T_{\infty}$. $\operatorname{set}\left(T_{\infty}\right) \subset \varphi_{G H}\left(M_{G H}\right) \subset Z$. Let $M_{S W I F}=\left(\operatorname{set}\left(T_{\infty}\right), d_{Z}, T_{\infty}\right) \square$. Wenger Compactness Thm: If $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\mathbf{M}\left(M_{j}\right) \leq V$ and $\mathbf{M}\left(\partial M_{j}\right) \leq A_{0}$ then $\exists M_{j_{k}} \xrightarrow{\text { SWIF }} M_{\text {SWIF }}$ possibly $M_{\text {SWIF }}=0$. How do we know which regions disappear? Use Filling Volumes!

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$\operatorname{Fill} \mathbf{V o l}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{Fill} \operatorname{Vol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{Fill} \operatorname{Vol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.

Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{D}^{m+1}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{D}^{m+1}\right)$.

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.

Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{D}^{m+1}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{D}^{m+1}\right)$.
Pf: Take $N=\mathbb{D}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \square

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj
Example: FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{D}^{m+1}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{D}^{m+1}\right)$.
Pf: Take $N=\mathbb{D}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \square
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\operatorname{Fill} \operatorname{Vol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{D}^{m+1}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{D}^{m+1}\right)$.
Pf: Take $N=\mathbb{D}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \square
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$,

Adapting Gromov's Filling Volume [Portegies-Sormani]:

$$
\text { FillVol }\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$.
Pf: Take $N=\mathbb{S}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow$ Equator $\subset \mathbb{S}_{+}^{m+1}$ is dist pres \square
Open: Is FillVol $\left(\left(\mathbb{S}^{m}, d_{\mathbb{S}^{m}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right)=\operatorname{Vol}\left(\mathbb{S}^{m+1}\right) / 2$? Pu Conj
Example: $\operatorname{FillVol}\left(\left(\mathbb{S}^{m}, d_{\mathbb{D}^{m+1}},\left[\left[\mathbb{S}^{m}\right]\right]\right)\right) \leq \operatorname{Vol}\left(\mathbb{D}^{m+1}\right)$.
Pf: Take $N=\mathbb{D}_{+}^{m+1}$ so $F: \mathbb{S}^{m} \rightarrow \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \square
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.

Filling Volumes and Balls [Portegies-Sormani]:

FillVol $\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.

Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.

Filling Volumes and Balls [Portegies-Sormani]:

FillVol $\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.

Filling Volumes and Balls [Portegies-Sormani]:

FillVol $\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if $\lim \inf _{r \rightarrow 0} \operatorname{FillVol}(\partial B(p, r)) / r^{m}>0$.

Filling Volumes and Balls [Portegies-Sormani]:

FillVol $\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}$
where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if lim inf $r \rightarrow 0$ FillVol $(\partial B(p, r)) / r^{m}>0$.
This corollary was applied by S-Wenger Matveev-Portegies to prove Thm: $M_{G H}=M_{\text {SWIF }}$ for M_{j} with $\operatorname{Vol}\left(M_{j}\right) \geq V$ and Ricci $\geq H$.

Filling Volumes and Balls [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if lim inf $r \rightarrow 0$ Fill $\operatorname{Vol}(\partial B(p, r)) / r^{m}>0$.
This corollary was applied by S-Wenger Matveev-Portegies to prove Thm: $M_{G H}=M_{S W I F}$ for M_{j} with $\operatorname{Vol}\left(M_{j}\right) \geq V$ and Ricci $\geq H$. Pf: Perelman Colding Gv: $\exists C_{H, V}^{m}$ s.t. FillVol $(\partial B(p, r)) \geq C_{V, H}^{m} r^{m}$.

Filling Volumes and Balls [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if lim inf $r \rightarrow 0$ FillVol $(\partial B(p, r)) / r^{m}>0$.
This corollary was applied by S-Wenger Matveev-Portegies to prove Thm: $M_{G H}=M_{S W I F}$ for M_{j} with $\operatorname{Vol}\left(M_{j}\right) \geq V$ and Ricci $\geq H$. Pf: Perelman Colding Gv: $\exists C_{H, V}^{m}$ s.t. FillVol $(\partial B(p, r)) \geq C_{V, H}^{m} r^{m}$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_{j} \xrightarrow{\text { SWIF }} B_{\infty} \Longrightarrow \operatorname{FillVol}\left(\partial B_{j}\right) \rightarrow$ FillVol $\left(\partial B_{\infty}\right)$.

Filling Volumes and Balls [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if lim inf $r \rightarrow 0$ FillVol $(\partial B(p, r)) / r^{m}>0$.
This corollary was applied by S-Wenger Matveev-Portegies to prove Thm: $M_{G H}=M_{S W I F}$ for M_{j} with $\operatorname{Vol}\left(M_{j}\right) \geq V$ and Ricci $\geq H$. Pf: Perelman Colding Gv: $\exists C_{H, V}^{m}$ s.t. FillVol $(\partial B(p, r)) \geq C_{V, H}^{m} r^{m}$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_{j} \xrightarrow{\text { SWIF }} B_{\infty} \Longrightarrow \operatorname{FillVol}\left(\partial B_{j}\right) \rightarrow$ FillVol $\left(\partial B_{\infty}\right)$.

Filling Volumes and Balls [Portegies-Sormani]:

$$
\operatorname{FillVol}\left(M^{m}\right)=\inf \left\{\mathbf{M}\left(N^{n+1}\right) \mid \partial N^{n+1}=M^{m}\right\}
$$

where the inf is over integral current spaces $N^{n+1}=\left(X_{N}, d_{N}, T_{N}\right)$ such that \exists current preserving isometry $F: M^{m} \rightarrow \partial N^{n+1}$.
Recall $\partial N=\left(\operatorname{set}\left(\partial T_{N}\right), d_{N}, \partial T_{N}\right)$ has the restricted distance d_{N} so $d_{N}(F(p), F(q))=d_{M}(p, q) \forall p, q \in X_{M}$ and $F_{\#} \partial T_{N}=T_{M}$.
Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r>0\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space and so is $\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)=\left(\partial B(p, r), d_{M},[[\partial B(p, r)]]\right)$, and FillVol $\left(\left(\partial\left(B(p, r), d_{M},[[B(p, r)]]\right)\right) \leq \mathbf{M}(B(p, r))\right.$.
Recall: $p \in \operatorname{set}(T)$ if $\liminf _{r \rightarrow 0} \mathbf{M}(B(p, r)) / r^{m}>0$.
Coro: $p \in \operatorname{set}(T)$ if lim inf $r \rightarrow 0$ FillVol $(\partial B(p, r)) / r^{m}>0$.
This corollary was applied by S-Wenger Matveev-Portegies to prove Thm: $M_{G H}=M_{S W I F}$ for M_{j} with $\operatorname{Vol}\left(M_{j}\right) \geq V$ and Ricci $\geq H$. Pf: Perelman Colding Gv: $\exists C_{H, V}^{m}$ s.t. FillVol $(\partial B(p, r)) \geq C_{V, H}^{m} r^{m}$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_{j} \xrightarrow{\text { SWIF }} B_{\infty} \Longrightarrow \operatorname{FillVol}\left(\partial B_{j}\right) \rightarrow$ FillVol $\left(\partial B_{\infty}\right)$.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow \operatorname{FillVol}\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow$ FillVol $\left(\partial M_{\infty}^{m}\right)$. Proof: We need only show that for any fixed $\epsilon>0$

FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow$ FillVol $\left(\partial M_{\infty}^{m}\right)$. Proof: We need only show that for any fixed $\epsilon>0$

FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t. $\mathbf{M}(A)+\mathbf{M}(B) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2$.

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow \operatorname{FillVol}\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t. $\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2$.
2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B$

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow \operatorname{FillVol}\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t. $\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2$.
2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

Filling Volumes and SWIF Limits [Portegies-Sormani]:
Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow \operatorname{FillVol}\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t. $\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2$.
2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

$$
\text { Let } N_{1}^{m}=\left(\operatorname{set}(A), d_{Z}, A\right) \text { so } \varphi_{i}: \partial M_{i} \rightarrow \partial N_{1} \subset Z .
$$

Filling Volumes and SWIF Limits [Portegies-Sormani]:
Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow \operatorname{FillVol}\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t.

$$
\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2 .
$$

2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

$$
\text { Let } N_{1}^{m}=\left(\operatorname{set}(A), d_{Z}, A\right) \text { so } \varphi_{i}: \partial M_{i} \rightarrow \partial N_{1} \subset Z .
$$

3. By defn of FillVol: $\exists N_{2}^{m}$ with $\partial N_{2}^{m}=\partial M_{2}^{m}$ such that

$$
\mathbf{M}\left(N_{2}^{m}\right) \leq \operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon / 2 .
$$

Filling Volumes and SWIF Limits [Portegies-Sormani]:
Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t.

$$
\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2 .
$$

2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

$$
\text { Let } N_{1}^{m}=\left(\operatorname{set}(A), d_{Z}, A\right) \text { so } \varphi_{i}: \partial M_{i} \rightarrow \partial N_{1} \subset Z .
$$

3. By defn of FillVol: $\exists N_{2}^{m}$ with $\partial N_{2}^{m}=\partial M_{2}^{m}$ such that

$$
\mathbf{M}\left(N_{2}^{m}\right) \leq \operatorname{Fill} \mathbf{V o l}\left(\partial M_{2}^{m}\right)+\epsilon / 2 .
$$

4. Glue N_{1}^{m} to N_{2}^{m} along ∂M_{2}^{m} to obtain $N_{1,2}^{m}$ s.t. $\partial N_{1,2}^{m}=\partial M_{1}^{m}$

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$. Proof: We need only show that for any fixed $\epsilon>0$

FillVol $\left(\partial M_{1}^{m}\right) \leq d_{\text {SWIF }}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t.

$$
\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2 .
$$

2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

$$
\text { Let } N_{1}^{m}=\left(\operatorname{set}(A), d_{Z}, A\right) \text { so } \varphi_{i}: \partial M_{i} \rightarrow \partial N_{1} \subset Z .
$$

3. By defn of FillVol: $\exists N_{2}^{m}$ with $\partial N_{2}^{m}=\partial M_{2}^{m}$ such that

$$
\mathbf{M}\left(N_{2}^{m}\right) \leq \operatorname{Fill} \mathbf{V o l}\left(\partial M_{2}^{m}\right)+\epsilon / 2 .
$$

4. Glue N_{1}^{m} to N_{2}^{m} along ∂M_{2}^{m} to obtain $N_{1,2}^{m}$ s.t. $\partial N_{1,2}^{m}=\partial M_{1}^{m}$
$\mathbf{M}\left(N_{1,2}\right) \leq \mathbf{M}\left(N_{1}^{m}\right)+\mathbf{M}\left(N_{2}^{m}\right) \leq$

Filling Volumes and SWIF Limits [Portegies-Sormani]:
Thm: $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\infty}^{m} \Longrightarrow$ FillVol $\left(\partial M_{j}^{m}\right) \rightarrow \operatorname{Fill} \operatorname{Vol}\left(\partial M_{\infty}^{m}\right)$.
Proof: We need only show that for any fixed $\epsilon>0$
FillVol $\left(\partial M_{1}^{m}\right) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.
1.
2.
3.
4.

1. By defn: $\exists \varphi_{i}: X_{i} \rightarrow Z$ and $A+\partial B=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}$ s.t.

$$
\mathbf{M}(A)+\mathbf{M}(B) \leq d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)+\epsilon / 2 .
$$

2. $\partial A=\partial \varphi_{1 \#} T_{1}-\partial \varphi_{2 \#} T_{2}-\partial \partial B=\varphi_{1 \#} \partial T_{1}-\varphi_{2 \#} \partial T_{2}$.

$$
\text { Let } N_{1}^{m}=\left(\operatorname{set}(A), d_{Z}, A\right) \text { so } \varphi_{i}: \partial M_{i} \rightarrow \partial N_{1} \subset Z .
$$

3. By defn of FillVol: $\exists N_{2}^{m}$ with $\partial N_{2}^{m}=\partial M_{2}^{m}$ such that

$$
\mathbf{M}\left(N_{2}^{m}\right) \leq \operatorname{Fill} \mathbf{V o l}\left(\partial M_{2}^{m}\right)+\epsilon / 2 .
$$

4. Glue N_{1}^{m} to N_{2}^{m} along ∂M_{2}^{m} to obtain $N_{1,2}^{m}$ s.t. $\partial N_{1,2}^{m}=\partial M_{1}^{m}$
$\mathbf{M}\left(N_{1,2}\right) \leq \mathbf{M}\left(N_{1}^{m}\right)+\mathbf{M}\left(N_{2}^{m}\right) \leq d_{S W I F}\left(M_{1}, M_{2}\right)+\operatorname{FillVol}\left(\partial M_{2}^{m}\right)+\epsilon$.

Intrinsic Flat and Gromov-Hausdorff Convergence

Christina Sormani

CUNY GC and Lehman College

Lectures IV: Proving Intrinsic Flat Convergence

Volume Preserving Intrinsic Flat $\mathcal{V \mathcal { F }}$ Convergence

Volume Preserving Intrinsic Flat $\mathcal{V} \mathcal{F}$ Convergence Defn: $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ if $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ and $\operatorname{Vol}\left(M_{j}\right) \rightarrow \operatorname{Vol}\left(M_{\infty}\right)$.

Volume Preserving Intrinsic Flat $\mathcal{V} \mathcal{F}$ Convergence

Defn: $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ if $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ and $\operatorname{Vol}\left(M_{j}\right) \rightarrow \operatorname{Vol}\left(M_{\infty}\right)$. Defn: $M_{j} \xrightarrow{\mathcal{F}} M_{\infty}$ if $d_{\mathcal{F}}\left(M_{j}, M_{\infty}\right)=d_{S W I F}\left(M_{j}, M_{\infty}\right) \rightarrow 0$:

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_{i}^{m} is: $d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}$ where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right], \varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right)$ is the Federer-Fleming Flat dist $=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): \mathbf{A}+\partial \mathrm{B}=\varphi_{1 \#}\left[\left[M_{1}^{m}\right]\right]-\varphi_{2 \#}\left[\left[M_{2}^{m}\right]\right]\right\}$

Lakzian-Sormani: Estimating $d_{\text {SWIF }}$
Lakzian - Sormani; Suppose $\left(\boldsymbol{M}_{1}, \boldsymbol{g}_{1}\right)$ and $\left(\boldsymbol{M}_{2}, \boldsymbol{g}_{2}\right)$ are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_{i} \subset M_{i}$. Identifying $W_{1}=W_{2}=W$ assume that on W we have

$$
g_{1} \leq(1+\varepsilon)^{2} g_{2} \text { and } g_{2} \leq(1+\varepsilon)^{2} g_{1}
$$

Taking the extrinsic diameters,

$$
\operatorname{diam}\left(M_{i}\right) \leq D
$$

we define a hemispherical width,

Lakzian-Sormani: Estimating $d_{\text {SWIF }}$

Lakzian - Sormani: Suppose $\left(\boldsymbol{M}_{1}, \boldsymbol{g}_{1}\right)$ and $\left(\boldsymbol{M}_{2}, g_{2}\right)$ are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_{i} \subset M_{i}$. Identifying $W_{1}=W_{2}=W$ assume that on W we have

$$
g_{1} \leq(1+\varepsilon)^{2} g_{2} \text { and } g_{2} \leq(1+\varepsilon)^{2} g_{1} .
$$

Taking the extrinsic diameters,

$$
\operatorname{diam}\left(M_{i}\right) \leq D
$$

we define a hemispherical width,

$$
a>\frac{\arccos (1+\varepsilon)^{-1}}{\pi} D
$$

Taking the difference in distances with respect to the outside manifolds, we set

$$
\left.\lambda^{\boldsymbol{A}}=\sup _{x, y \in W}\left|d_{M_{1}}(x, y)-d_{M_{2}}(x, y)\right| \leq 2 D,\right\}
$$

and we define the height,

$$
\bar{h}=\max \left\{\sqrt{2 \lambda D}, D \sqrt{\varepsilon^{2}+2 \varepsilon}\right\} .
$$

Then taking $Z=M_{1} \Perp \omega_{1} \times[0, h] \Perp \underset{\text { varped }}{\omega_{x} \times[0, a]} \geqslant \omega_{2} \times[0, h] \Perp M_{2}$

$$
\begin{aligned}
d_{\mathscr{F}}\left(\boldsymbol{M}_{1}, \boldsymbol{M}_{2}\right) \leq & (2 \bar{h}+a)\left(\operatorname{Vol}_{m}\left(\boldsymbol{W}_{1}\right)+\operatorname{Vol}_{m}\left(W_{2}\right)+\operatorname{Vol}_{m-1}\left(\partial W_{1}\right)+\operatorname{Vol}_{m-1}\left(\partial W_{2}\right)\right) \\
& +\operatorname{Vol}_{m}\left(\boldsymbol{M}_{1} \backslash \boldsymbol{W}_{1}\right)+\operatorname{Vol}_{m}\left(\boldsymbol{M}_{\mathbf{2}} \backslash W_{2}\right),
\end{aligned}
$$

Lakzian-Sormani: Estimating $d_{\text {SWIF }}$

Lakzían-Sormani: Suppose $\left(\boldsymbol{M}_{1}, \boldsymbol{g}_{1}\right)$ and $\left(\boldsymbol{M}_{2}, \boldsymbol{g}_{2}\right)$ are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_{i} \subset M_{i}$. Identifying $W_{1}=W_{2}=W$ assume that on W we have

$$
g_{1} \leq(1+\varepsilon)^{2} g_{2} \text { and } g_{2} \leq(1+\varepsilon)^{2} g_{1} .
$$

Taking the extrinsic diameters,

$$
\operatorname{diam}\left(M_{i}\right) \leq D
$$

we define a hemispherical width,

$$
a>\frac{\arccos (1+\varepsilon)^{-1}}{\pi} D
$$

Taking the difference in distances with respect to the outside manifolds, we set

$$
\left.\lambda=\sup _{x, y \in W}\left|d_{M_{1}}(x, y)-d_{M_{2}}(x, y)\right| \leq 2 D,\right\} \begin{aligned}
& \text { toid } \\
& \text { auo } \\
& \text { shor tuts }
\end{aligned}
$$

$$
\bar{h}=\max \left\{\sqrt{2 \lambda D}, D \sqrt{\varepsilon^{2}+2 \varepsilon}\right\} .
$$

Then taking $Z=M_{1} \Perp \omega_{1} \times[0, h] \Perp \omega_{\text {wa.ped }}^{\omega} \times[0, a] \Perp \omega_{2} \times[0, h] \Perp M_{2}$

$$
\begin{aligned}
d_{\mathscr{F}}\left(\boldsymbol{M}_{1}, M_{2}\right) \leq & (2 \bar{h}+a)\left(\operatorname{Vol}_{m}\left(\boldsymbol{W}_{1}\right)+\operatorname{Vol}_{m}\left(\boldsymbol{W}_{2}\right)+\operatorname{Vol}_{m-1}\left(\partial W_{1}\right)+\operatorname{Vol}_{m-1}\left(\partial W_{2}\right)\right) \\
& +\operatorname{Vol}_{m}\left(\boldsymbol{M}_{1} \backslash \boldsymbol{W}_{1}\right)+\operatorname{Vol}_{m}\left(\boldsymbol{M}_{\mathbf{2}} \backslash W_{2}\right),
\end{aligned}
$$

Allen-Perales-Sormani VADB

Allen-Perales-Sormani: [arXiv:2003.01172]

$$
M_{j} \xrightarrow{\mathrm{VADB}} M_{\infty} \Longrightarrow M_{j} \xrightarrow{\mathcal{V \mathcal { F }}} M_{\infty} .
$$

Defn: Volume Above Distance Below Conv: $M_{j} \xrightarrow{\text { VADB }} M_{\infty}$ if $\operatorname{Vol}_{j}\left(M_{j}\right) \rightarrow \operatorname{Vol}_{\infty}\left(M_{\infty}\right)$ and $\exists D>0$ s.t. $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\exists C^{1}$ diffeomorphism $\psi_{j}: M_{\infty} \rightarrow M_{j}$ such that

$$
d_{j}\left(\psi_{j}(p), \psi_{j}(q)\right) \geq d_{\infty}(p, q) \forall p, q \in M_{\infty}
$$

Allen-Perales-Sormani VADB

Allen-Perales-Sormani: [arXiv:2003.01172]

$$
M_{j} \xrightarrow{\mathrm{VADB}} M_{\infty} \Longrightarrow M_{j} \xrightarrow{\mathcal{V \mathcal { F }}} M_{\infty} .
$$

Defn: Volume Above Distance Below Conv: $M_{j} \xrightarrow{\text { VADB }} M_{\infty}$ if $\operatorname{Vol}_{j}\left(M_{j}\right) \rightarrow \operatorname{Vol}_{\infty}\left(M_{\infty}\right)$ and $\exists D>0$ s.t. $\operatorname{Diam}\left(M_{j}\right) \leq D$ and $\exists C^{1}$ diffeomorphism $\psi_{j}: M_{\infty} \rightarrow M_{j}$ such that

$$
d_{j}\left(\psi_{j}(p), \psi_{j}(q)\right) \geq d_{\infty}(p, q) \forall p, q \in M_{\infty}
$$

An earlier theorem that inspired us:
Huang-Lee -Sormani: Given $\left(M, d_{0}\right)$ Riemannian without boundary and fix $\lambda>0$, suppose that d_{j} are length metrics on M such that

$$
\lambda \geq \frac{d_{j}(p, q)}{d_{0}(p, q)} \geq \frac{1}{\lambda}
$$

Then there exists a subsequence, also denoted d_{j}, and a length metric d_{∞} such that d_{j} converges uniformly to d_{∞} :

$$
\varepsilon_{j}=\sup \left\{\left|d_{j}(p, q)-d_{\infty}(p, q)\right|: p, q \in X\right\} \rightarrow 0
$$

and M_{j} converges in the intrinsic flat and Gromov-Hausdorff sense to M_{∞} :

$$
M_{j} \xrightarrow{\mathcal{F}} M_{\infty} \text { and } M_{j} \xrightarrow{G H} M_{\infty}
$$

where $M_{j}=\left(M, d_{j}\right)$ and $M_{\infty}=\left(M, d_{\infty}\right)$.

Allen-Perales-Sormani VADB Constructing Z

Allen-Perales-SormaniLet M be an oriented, connected and closed manifold, $M_{j}=$ $\left(M, g_{j}\right)$ and $M_{0}=\left(M, g_{0}\right)$ be Riemannian manifolds with $\operatorname{Diam}\left(M_{j}\right) \leq D$, $\operatorname{Vol}_{j}\left(M_{j}\right) \leq V$ and $F_{j}: M_{j} \rightarrow M_{0}$ a C^{1} diffeomorphism and distance nonincreasing map:

$$
\begin{equation*}
d_{j}(x, y) \geq d_{0}\left(F_{j}(x), F_{j}(y)\right) \quad \forall x, y \in M_{j} . \tag{120}
\end{equation*}
$$

Let $W_{j} \subset M_{j}$ be a measurable set and assume that there exists a $\delta_{j}>0$ so that

$$
\begin{equation*}
d_{j}(x, y) \leq d_{0}\left(F_{j}(x), F_{j}(y)\right)+2 \delta_{j} \quad \forall x, y \in W_{j} \tag{121}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Vol}_{j}\left(M_{j} \backslash W_{j}\right) \leq V_{j} \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{j} \geq \sqrt{2 \delta_{j} D+\delta_{j}^{2}} \tag{123}
\end{equation*}
$$

then

$$
\begin{equation*}
d_{\mathcal{F}}\left(M_{0}, M_{j}\right) \leq 2 V_{j}+h_{j} V . \tag{124}
\end{equation*}
$$

Allen-Perales-Sormani VADB Constructing Z

Allen-Perales-SormaniLet M be an oriented, connected and closed manifold, $M_{j}=$ $\left(M, g_{j}\right)$ and $M_{0}=\left(M, g_{0}\right)$ be Riemannian manifolds with $\operatorname{Diam}\left(M_{j}\right) \leq D$, $\operatorname{Vol}_{j}\left(M_{j}\right) \leq V$ and $F_{j}: M_{j} \rightarrow M_{0}$ a C^{1} diffeomorphism and distance nonincreasing map:

$$
\begin{equation*}
d_{j}(x, y) \geq d_{0}\left(F_{j}(x), F_{j}(y)\right) \quad \forall x, y \in M_{j} . \tag{120}
\end{equation*}
$$

Let $W_{j} \subset M_{j}$ be a measurable set and assume that there exists a $\delta_{j}>0$ so that

$$
\begin{equation*}
d_{j}(x, y) \leq d_{0}\left(F_{j}(x), F_{j}(y)\right)+2 \delta_{j} \quad \forall x, y \in W_{j} \tag{121}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Vol}_{j}\left(M_{j} \backslash W_{j}\right) \leq V_{j} \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{j} \geq \sqrt{2 \delta_{j} D+\delta_{j}^{2}} \tag{123}
\end{equation*}
$$

then

$$
\begin{equation*}
d_{\mathcal{F}}\left(M_{0}, M_{j}\right) \leq 2 V_{j}+h_{j} V . \tag{124}
\end{equation*}
$$

Allen-Perales-Sormani VADB Constructing Z

Allen-Perales-SormaniLet M be an oriented, connected and closed manifold, $M_{j}=$ $\left(M, g_{j}\right)$ and $M_{0}=\left(M, g_{0}\right)$ be Riemannian manifolds with $\operatorname{Diam}\left(M_{j}\right) \leq D$, $\operatorname{Vol}_{j}\left(M_{j}\right) \leq V$ and $F_{j}: M_{j} \rightarrow M_{0}$ a C^{1} diffeomorphism and distance nonincreasing map:

$$
\begin{equation*}
d_{j}(x, y) \geq d_{0}\left(F_{j}(x), F_{j}(y)\right) \quad \forall x, y \in M_{j} . \tag{120}
\end{equation*}
$$

Let $W_{j} \subset M_{j}$ be a measurable set and assume that there exists a $\delta_{j}>0$ so that

$$
\begin{equation*}
d_{j}(x, y) \leq d_{0}\left(F_{j}(x), F_{j}(y)\right)+2 \delta_{j} \quad \forall x, y \in W_{j} \tag{121}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Vol}_{j}\left(M_{j} \backslash W_{j}\right) \leq V_{j} \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{j} \geq \sqrt{2 \delta_{j} D+\delta_{j}^{2}} \tag{123}
\end{equation*}
$$

then

$$
\begin{equation*}
d_{\mathcal{F}}\left(M_{0}, M_{j}\right) \leq 2 V_{j}+h_{j} V . \tag{124}
\end{equation*}
$$

Z is M_{j} glued along W_{j} to $M_{j} \times[0, h]$ glued along $F_{j}\left(W_{j}\right)$ to M_{0}.

Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If $\left(M, g_{j}\right)$ are compact continuous Riemannian manifolds without boundary and $\left(M, g_{0}\right)$ is a smooth Riemannian manifold such that

$$
\begin{equation*}
g_{j}(v, v) \geq g_{0}(v, v) \quad \forall v \in T_{p} M \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M) \tag{86}
\end{equation*}
$$

then there exists a subsequence such that
(87) $\quad \lim _{j \rightarrow \infty} d_{j}(p, q)=d_{0}(p, q)$ pointwise a.e. $(p, q) \in M \times M$.

Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormanc: If $\left(M, g_{j}\right)$ are compact continuous Riemannian manifolds without boundary and (M, g_{0}) is a smooth Riemannian manifold such that

$$
\begin{equation*}
g_{j}(v, v) \geq g_{0}(v, v) \quad \forall v \in T_{p} M \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M) \tag{86}
\end{equation*}
$$

then there exists a subsequence such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d_{j}(p, q)=d_{0}(p, q) \text { pointwise a.e. }(p, q) \in M \times M . \tag{87}
\end{equation*}
$$

Figure 2. A tube \mathcal{T} foliated by g_{0}-geodesics, γ, with $L_{j}(\gamma) \geq L_{0}(\gamma)$ has $\operatorname{Vol}_{j}(\mathcal{T}) \rightarrow \operatorname{Vol}_{0}(\mathcal{T})$ so $L_{j}(\gamma) \rightarrow L_{0}(\gamma)$ for almost every γ but not for γ ending at a tip.

Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormanc: If $\left(M, g_{j}\right)$ are compact continuous Riemannian manifolds without boundary and (M, g_{0}) is a smooth Riemannian manifold such that

$$
\begin{equation*}
g_{j}(v, v) \geq g_{0}(v, v) \quad \forall v \in T_{p} M \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M) \tag{86}
\end{equation*}
$$

then there exists a subsequence such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d_{j}(p, q)=d_{0}(p, q) \text { pointwise a.e. }(p, q) \in M \times M . \tag{87}
\end{equation*}
$$

Figure 2. A tube \mathcal{T} foliated by g_{0}-geodesics, γ, with $L_{j}(\gamma) \geq L_{0}(\gamma)$ has $\operatorname{Vol}_{j}(\mathcal{T}) \rightarrow \operatorname{Vol}_{0}(\mathcal{T})$ so $L_{j}(\gamma) \rightarrow L_{0}(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$?

Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormanc: If $\left(M, g_{j}\right)$ are compact continuous Riemannian manifolds without boundary and (M, g_{0}) is a smooth Riemannian manifold such that

$$
\begin{equation*}
g_{j}(v, v) \geq g_{0}(v, v) \quad \forall v \in T_{p} M \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M) \tag{86}
\end{equation*}
$$

then there exists a subsequence such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d_{j}(p, q)=d_{0}(p, q) \text { pointwise a.e. }(p, q) \in M \times M . \tag{87}
\end{equation*}
$$

Figure 2. A tube \mathcal{T} foliated by g_{0}-geodesics, γ, with $L_{j}(\gamma) \geq L_{0}(\gamma)$ has $\operatorname{Vol}_{j}(\mathcal{T}) \rightarrow \operatorname{Vol}_{0}(\mathcal{T})$ so $L_{j}(\gamma) \rightarrow L_{0}(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$?
Egoroff's Theorem?

Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If $\left(M, g_{j}\right)$ are compact continuous Riemannian manifolds without boundary and $\left(M, g_{0}\right)$ is a smooth Riemannian manifold such that

$$
\begin{equation*}
g_{j}(v, v) \geq g_{0}(v, v) \quad \forall v \in T_{p} M \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M) \tag{86}
\end{equation*}
$$

then there exists a subsequence such that
(87) $\lim _{j \rightarrow \infty} d_{j}(p, q)=d_{0}(p, q)$ pointwise a.e. $(p, q) \in M \times M$.

Figure 2. A tube \mathcal{T} foliated by g_{0}-geodesics, γ, with $L_{j}(\gamma) \geq L_{0}(\gamma)$ has $\operatorname{Vol}_{j}(\mathcal{T}) \rightarrow \operatorname{Vol}_{0}(\mathcal{T})$ so $L_{j}(\gamma) \rightarrow L_{0}(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$?
Egoroff's Theorem? But Egoroff's Theorem only gives a set $S \in M \times M$ controlling $d(p, q)$ uniformly $\forall(p, q) \in S \ldots$

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.
Proposition Under the hypotheses of Theorem 4.1, for every $\varepsilon>0$ there exists a dvol $g_{0} \times$ dvol $_{g_{0}}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

$$
\begin{gather*}
\sup \left\{\left|d_{j}(p, q)-d_{0}(p, q)\right|:(p, q) \in S_{\varepsilon}\right\}=\delta_{\varepsilon, j} \rightarrow 0, \tag{185}\\
\operatorname{Vol}_{0 \times 0}\left(S_{\varepsilon}\right)>(1-\varepsilon) \operatorname{Vol}_{0 \times 0}(M \times M) . \tag{186}\\
(p, q) \in S_{\varepsilon} \Longleftrightarrow(q, p) \in S_{\varepsilon} . \tag{187}
\end{gather*}
$$

and

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.
Proposition Under the hypotheses of Theorem 4.1, for every $\varepsilon>0$ there exists a dvol $g_{0} \times$ dvol $_{g_{0}}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

$$
\begin{gather*}
\sup \left\{\left|d_{j}(p, q)-d_{0}(p, q)\right|:(p, q) \in S_{\varepsilon}\right\}=\delta_{\varepsilon, j} \rightarrow 0, \tag{185}\\
\operatorname{Vol}_{0 \times 0}\left(S_{\varepsilon}\right)>(1-\varepsilon) \operatorname{Vol}_{0 \times 0}(M \times M) . \tag{186}
\end{gather*}
$$

and

$$
S_{p, \varepsilon}=\left\{q \in M:(p, q) \in S_{\varepsilon}\right\},
$$

are dvol $g_{g_{0}}$ measurable and satisfy

$$
(1-\varepsilon) \operatorname{Vol}_{0}(M)<\int_{p \in M} \frac{\operatorname{Vol}_{0}\left(S_{p, \varepsilon}\right)}{\operatorname{Vol}_{0}(M)} d v o l_{g_{0}} .
$$

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.
Proposition Under the hypotheses of Theorem 4.1, for every $\varepsilon>0$ there exists a dol $g_{0} \times$ dol $_{g_{0}}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

$$
\begin{gather*}
\sup \left\{\left|d_{j}(p, q)-d_{0}(p, q)\right|:(p, q) \in S_{\varepsilon}\right\}=\delta_{\varepsilon, j} \rightarrow 0, \tag{185}\\
\operatorname{Vol}_{0 \times 0}\left(S_{\varepsilon}\right)>(1-\varepsilon) \operatorname{Vol}_{0 \times 0}(M \times M) . \tag{186}
\end{gather*}
$$

and

$$
S_{p, \varepsilon}=\left\{q \in M:(p, q) \in S_{\varepsilon}\right\},
$$

are dol $g_{g_{0}}$ measurable and satisfy

$$
(1-\varepsilon) \operatorname{Vol}_{0}(M)<\int_{p \in M} \frac{\operatorname{Vol}_{0}\left(S_{p, \varepsilon}\right)}{\operatorname{Vol}_{0}(M)} \operatorname{dvol}_{g_{0}} .
$$

Lemma For $W_{\kappa \varepsilon}=\left\{p: V_{0} I_{0}\left(S_{p, \varepsilon}\right)>(1-K \varepsilon) V_{0} l_{0}(M)\right\}$

$$
\operatorname{Vol}_{0}\left(W_{\kappa \varepsilon}\right)>\frac{\kappa-1}{\kappa} \operatorname{Vol}_{0}(M)
$$

and $\left|d_{j}(p, q)-d_{0}(p, q)\right|<\delta_{\varepsilon, j} \quad \forall p, q \in W_{K, \varepsilon}$

Allen-Perales-Sormani VADB to $\mathcal{V \mathcal { F }}$ is Proven

Lemma For $W_{\kappa \varepsilon}=\left\{p: V_{0} I_{0}\left(S_{p, \varepsilon}\right)>(1-K \varepsilon) V_{0} l_{0}(M)\right\}$

$$
\operatorname{Vol}_{0}\left(W_{\kappa \varepsilon}\right)>\frac{\kappa-1}{\kappa} \operatorname{Vol}_{0}(M)
$$

and $\left|d_{j}(p, q)-d_{0}(p, q)\right|<\delta_{\varepsilon, j} \quad \forall p, q \in W_{K, \varepsilon}$ combined with our estimate on SWIF:

Allen-Perales-SormaniLet M be an oriented, connected and closed manifold, $M_{j}=$ (M, g_{j}) and $M_{0}=\left(M, g_{0}\right)$ be Riemannian manifolds with $\operatorname{Diam}\left(M_{j}\right) \leq D$, $\operatorname{Vol}_{j}\left(M_{j}\right) \leq V$ and $F_{j}: M_{j} \rightarrow M_{0}$ a C^{1} diffeomorphism and distance nonincreasing map:

$$
\begin{equation*}
d_{j}(x, y) \geq d_{0}\left(F_{j}(x), F_{j}(y)\right) \quad \forall x, y \in M_{j} . \tag{120}
\end{equation*}
$$

Let $W_{j} \subset M_{j}$ be a measurable set and assume that there exists a $\delta_{j}>0$ so that

$$
\begin{equation*}
d_{j}(x, y) \leq d_{0}\left(F_{j}(x), F_{j}(y)\right)+2 \delta_{j} \quad \forall x, y \in W_{j} \tag{121}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Vol}_{j}\left(M_{j} \backslash W_{j}\right) \leq V_{j} \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{j} \geq \sqrt{2 \delta_{j} D+\delta_{j}^{2}} \tag{123}
\end{equation*}
$$

then

$$
\begin{equation*}
d_{\mathcal{F}}\left(M_{0}, M_{j}\right) \leq 2 V_{j}+h_{j} V . \tag{124}
\end{equation*}
$$

completes the proof of $M_{j} \xrightarrow{\text { VADB }} M_{\infty} \Longrightarrow M_{j} \xrightarrow{\mathcal{V F}} M_{\infty} . \square$

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.
Key New Idea: generalize oriented Riemannian Manifolds.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\} .
$$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m} L \operatorname{set} T\right)$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\} .
$$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.
Furthermore: $\mathbf{M}(M)=\mathbf{M}(T)$ and $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_{i}: A_{i} \rightarrow \varphi_{i}\left(A_{i}\right) \subset Z$ and weights $a_{i} \in \mathbb{Z}$ s.t.

$$
T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=\sum_{i=1}^{\infty} a_{i} \int_{A_{i}}(f \circ \varphi) d\left(\pi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\pi_{m} \circ \varphi\right)
$$

with mass $\mathbf{M}(T)=\|T\|(Z)$ where $\|T\|=\lambda \theta\left(\mathcal{H}_{m}\llcorner\operatorname{set} T)\right.$ and

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

Key Idea: Integral currents generalize oriented submanifolds in Z.
Key New Idea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$.
Furthermore: $\mathbf{M}(M)=\mathbf{M}(T)$ and $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.
Thus X is cntbly \mathcal{H}^{m} rectifiable: it has cntbly many pairwise disjoint Lip charts $\varphi_{i}: A_{i} \rightarrow X$ s.t. $\mathcal{H}^{m}\left(X \backslash \bigcup_{i=1}^{\infty} \varphi_{i}\left(A_{i}\right)\right)=0$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
\begin{gathered}
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\} \\
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s \\
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
\end{gathered}
$$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
\begin{gathered}
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\} \\
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s \\
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
\end{gathered}
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics. Its boundary is $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$ The mass $\mathbf{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics. Its boundary is $\partial M=(\operatorname{set}(\partial T), d, \partial T)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics.

$$
\text { Its boundary is } \partial M=(\operatorname{set}(\partial T), d, \partial T)
$$

A compact oriented manifold $\left(M^{m}, g\right)$ is an integral current space $\left(M, d_{M},[[M]]\right)$ with weight $\theta=1$ and $\mathbf{M}(U)=\operatorname{Vol}(U)=\mathcal{H}^{m}(U)$.

Oriented Riemannian Mnflds and Integral Current Spaces

An oriented Riemannian mnfld $\left(M^{m}, g\right)$ is a metric space $\left(M, d_{M}\right)$ with a smooth collection of charts

$$
d_{M}(p, q)=\inf \left\{L_{g}(C): C:[0,1] \rightarrow M, C(0)=p, C(1)=q\right\}
$$

$$
\text { where } L_{g}(C)=\int_{0}^{1} g\left(C^{\prime}(s), C^{\prime}(s)\right)^{1 / 2} d s
$$

$$
\operatorname{Vol}(U)=\mathcal{H}^{m}(U) \text { is the Hausdorff measure. }
$$

An integral current space $M=(X, d, T)$ is a metric space (X, d) and integral current T s.t. $\operatorname{set}(T)=X$ where

$$
\operatorname{set}(T)=\left\{z \in Z \mid \liminf _{r \rightarrow 0}\|T\|(B(z, r)) / r^{m}>0\right\}
$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \rightarrow \mathbb{Z}$
The mass $\mathrm{M}(U)=\|T\|(U)$ has $\|T\|=\theta \lambda \mathcal{H}^{m}$.
It might not be connected and might not have any geodesics.

$$
\text { Its boundary is } \partial M=(\operatorname{set}(\partial T), d, \partial T)
$$

A compact oriented manifold $\left(M^{m}, g\right)$ is an integral current space $\left(M, d_{M},[[M]]\right)$ with weight $\theta=1$ and $\mathbf{M}(U)=\operatorname{Vol}(U)=\mathcal{H}^{m}(U)$. Its boundary $\left(\partial M, d_{M},[[\partial M]]\right)$ has the restricted distance d_{M}.

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$,

Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_{i}^{m}=\left(X_{i}, d_{i}, T_{i}\right)$ is:

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where $\varphi_{\#} T\left(f, \pi_{1}, \ldots, \pi_{m}\right)=T\left(f \circ \varphi, \pi_{1} \circ \varphi, \ldots, \pi_{m} \circ \varphi\right)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Here: $d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right)$ is the Federer-Fleming Flat dist

$$
=\inf \left\{\underset{\text { area }}{\mathbf{M}}(\mathrm{A})+\underset{\text { vol }}{\mathbf{M}}(\mathrm{B}): A+\partial \mathrm{B}=\varphi_{1 \#} T_{1}-\varphi_{2 \#} T_{2}\right\}
$$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$
s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$
s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$
s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \partial M_{j} \xrightarrow{\text { SWIF }} \partial M_{\infty}
$$

Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$
d_{S W I F}\left(M_{1}^{m}, M_{2}^{m}\right)=\inf \left\{d_{F}^{Z}\left(\varphi_{1 \#} T_{1}, \varphi_{2 \#} T_{2}\right) \mid \varphi_{i}: M_{i}^{m} \rightarrow Z\right\}
$$

where the inf over complete Z and dist. pres. $\varphi_{i}: M_{i}^{m} \rightarrow Z$.
Thm: The infimum is achieved, so we can choose $Z^{\prime}=\operatorname{set}(A) \cup \operatorname{set}(B)$ which is separable and rectifiable.

Thm: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(X_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$
s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

$$
\begin{aligned}
& M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \partial M_{j} \xrightarrow{\text { SWIF }} \partial M_{\infty} \\
& M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \Longrightarrow \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

Thm [Sor-ArzAsc]: For any $p \in M_{\infty}$ there exists $p_{j} \in M_{j}$ s.t. $d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{\infty}(p)\right) \rightarrow 0$.

Arzela-Ascoli Theorem

Theorem [Sor-ArzAsc] Suppose $M_{i}=\left(X_{i}, d_{i}, T_{i}\right)$ are integral current spaces for $i \in\{1,2, \ldots, \infty\}$ and $M_{i} \xrightarrow{\mathcal{F}} M_{\infty}$ and $F_{i}: X_{i} \rightarrow W$ are Lipschitz maps into a compact metric space W with

$$
\begin{equation*}
\operatorname{Lip}\left(F_{i}\right) \leq K, \tag{188}
\end{equation*}
$$

then a subsequence converges to a Lipschitz map $F_{\infty}: X_{\infty} \rightarrow W$ with

$$
\begin{equation*}
\operatorname{Lip}\left(F_{\infty}\right) \leq K \tag{189}
\end{equation*}
$$

More specifically, there exists isometric embeddings of the subsequence, $\varphi_{i}: X_{i} \rightarrow Z$, such that $d_{F}^{Z}\left(\varphi_{i \not l} T_{i}, \varphi_{\text {owl }} T_{\infty}\right) \rightarrow 0$ and for any sequence $p_{i} \in X_{i}$ converging to $p \in X_{\infty}$,

$$
\begin{equation*}
d_{Z}\left(\varphi_{i}\left(p_{i}\right), \varphi_{\infty}(p)\right) \rightarrow 0, \tag{190}
\end{equation*}
$$

one has converging images,

$$
\begin{equation*}
d_{W}\left(F_{i}\left(p_{i}\right), F_{\infty}(p)\right) \rightarrow 0 . \tag{191}
\end{equation*}
$$

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0$ and $\varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then
$\exists p_{j} \in M_{j}$ such that $d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that $\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that $\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$. Coro: $\lim \inf _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that $\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$. Coro: ${\lim \inf _{j \rightarrow \infty}}^{\mathbf{M}}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.
Coro: $\partial B\left(p_{j}, r\right) \rightarrow \partial B\left(p_{0}, r\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that
$\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$.
Coro: $\lim \inf _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.
Coro: $\partial B\left(p_{j}, r\right) \rightarrow \partial B\left(p_{0}, r\right)$.
Coro: $\operatorname{FillVol}\left(\partial B\left(p_{j}, r\right)\right) \rightarrow \operatorname{FillVol}\left(\partial B\left(p_{0}, r\right)\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that
$\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$.
Coro: $\lim \inf _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.
Coro: $\partial B\left(p_{j}, r\right) \rightarrow \partial B\left(p_{0}, r\right)$.
Coro: $\operatorname{FillVol}\left(\partial B\left(p_{j}, r\right)\right) \rightarrow \operatorname{FillVol}\left(\partial B\left(p_{0}, r\right)\right)$.
Coro: $\operatorname{Diam}\left(M_{0}\right) \leq \liminf _{j \rightarrow \infty} \operatorname{Diam}\left(M_{j}\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that
$\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$.
Coro: $\lim \inf _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.
Coro: $\partial B\left(p_{j}, r\right) \rightarrow \partial B\left(p_{0}, r\right)$.
Coro: $\operatorname{FillVol}\left(\partial B\left(p_{j}, r\right)\right) \rightarrow \operatorname{FillVol}\left(\partial B\left(p_{0}, r\right)\right)$.
Coro: $\operatorname{Diam}\left(M_{0}\right) \leq \liminf _{j \rightarrow \infty} \operatorname{Diam}\left(M_{j}\right)$.
Thm: If $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\text {SWIF }} \neq 0^{m}$ then $\exists N_{j} \subset M_{j}$ such that $N_{j} \xrightarrow{\mathrm{GH}} M_{\text {SWIF }}$ and $\liminf _{j \rightarrow \infty} \mathbf{M}\left(N_{j}\right) \geq \mathbf{M}\left(M_{\text {SWIF }}\right)$.

Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $\left(B(p, r), d_{M},[[B(p, r)]]\right)$ is an integral current space for a.e. $r>0$.
Thm [SW]: If $M_{j}=\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }} M_{0}=\left(x_{0}, d_{0}, T_{0}\right)$
\exists complete separable Z and dist. pres. $\varphi_{j}: X_{j} \rightarrow Z$ such that

$$
d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{0 \#} T_{0}\right) \rightarrow 0 \text { and } \varphi_{j \#} T_{j}(\omega) \rightarrow \varphi_{0 \#} T_{0}(\omega)
$$

Thm: If $p_{0} \in M_{0}$ and $M_{j} \xrightarrow{\text { SWIF }} M_{0}$, then

$$
\exists p_{j} \in M_{j} \text { such that } d_{Z}\left(\varphi_{j}\left(p_{j}\right), \varphi_{0}\left(p_{0}\right)\right) \rightarrow 0
$$

Furthermore: For a.e. $r>0 \exists$ subsequence j_{k} such that
$\left(B\left(p_{j_{k}}, r\right), d_{M},\left[\left[B\left(p_{j_{k}}, r\right)\right]\right]\right) \xrightarrow{\text { SWIF }}\left(B\left(p_{0}, r\right), d_{M},\left[\left[B\left(p_{0}, r\right)\right]\right]\right)$.
Coro: $\lim \inf _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right) \geq \mathbf{M}\left(B\left(p_{0}, r\right)\right)$.
Coro: $\partial B\left(p_{j}, r\right) \rightarrow \partial B\left(p_{0}, r\right)$.
Coro: $\operatorname{FillVol}\left(\partial B\left(p_{j}, r\right)\right) \rightarrow \operatorname{FillVol}\left(\partial B\left(p_{0}, r\right)\right)$.
Coro: $\operatorname{Diam}\left(M_{0}\right) \leq \liminf _{j \rightarrow \infty} \operatorname{Diam}\left(M_{j}\right)$.
Thm: If $M_{j}^{m} \xrightarrow{\text { SWIF }} M_{\text {SWIF }} \neq 0^{m}$ then $\exists N_{j} \subset M_{j}$ such that $N_{j} \xrightarrow{\mathrm{GH}} M_{\text {SWIF }}$ and $\liminf _{j \rightarrow \infty} \mathbf{M}\left(N_{j}\right) \geq \mathbf{M}\left(M_{\text {SWIF }}\right)$.
The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.

Ambrosio-Kirchheim Slicing Theorem:
Given Lipschitz, $f: Z \rightarrow \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$
<T, f, s>:=-\partial\left(T\left\llcorner f^{-1}(s, \infty)\right)+(\partial T)\left\llcorner f^{-1}(s, \infty),\right.\right.
$$

where S restricted to U is $\left(S\llcorner U)\left(h, \pi_{1}, \ldots\right)=S\left(\chi_{U} \cdot h, \pi_{1}, \ldots\right)\right.$.

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, $f: Z \rightarrow \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$
<T, f, s>:=-\partial\left(T\left\llcorner f^{-1}(s, \infty)\right)+(\partial T)\left\llcorner f^{-1}(s, \infty)\right.\right.
$$

where S restricted to U is $\left(S\llcorner U)\left(h, \pi_{1}, \ldots\right)=S\left(\chi_{U} \cdot h, \pi_{1}, \ldots\right)\right.$.

To prove it is an integral current, they prove its mass and the mass of $\partial<T, f, s>=<-\partial T, f, s>$ is finite for a.e. $s \in \mathbb{R}$.

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, $f: Z \rightarrow \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$
<T, f, s>:=-\partial\left(T\left\llcorner f^{-1}(s, \infty)\right)+(\partial T)\left\llcorner f^{-1}(s, \infty)\right.\right.
$$

where S restricted to U is $\left(S\llcorner U)\left(h, \pi_{1}, \ldots\right)=S\left(\chi_{U} \cdot h, \pi_{1}, \ldots\right)\right.$.

To prove it is an integral current, they prove its mass and the mass of $\partial<T, f, s>=<-\partial T, f, s>$ is finite for a.e. $s \in \mathbb{R}$. In fact:

$$
\int_{s \in \mathbb{R}} \mathbf{M}(<T, f, s>) d s=\mathbf{M}(T\llcorner d f) \leq \operatorname{Lip}(f) \mathbf{M}(T)
$$

where $\left(T\llcorner d f)\left(h, \pi_{1}, \ldots, \pi_{m-1}\right)=T\left(h, f, \pi_{1}, \ldots \pi_{m-1}\right)\right.$.

Flat Distance between Slices in Z
Given integral currents T_{i} in Z then we have $T_{1}-T_{2}=A+\partial B$ where $d_{F}^{Z}\left(T_{1}, T_{2}\right)=\mathbf{M}(A)+\mathbf{M}(B)$.

Flat Distance between Slices in Z

Given integral currents T_{i} in Z then we have $T_{1}-T_{2}=A+\partial B$
where $d_{F}^{Z}\left(T_{1}, T_{2}\right)=\mathbf{M}(A)+\mathbf{M}(B)$.
$\left.\left.\left.<T_{1}, f, s\right\rangle-<T_{2}, f, s\right\rangle=<A, f, s\right\rangle+\langle\partial B, f, s\rangle$

Flat Distance between Slices in Z

Given integral currents T_{i} in Z then we have $T_{1}-T_{2}=A+\partial B$
where $d_{F}^{Z}\left(T_{1}, T_{2}\right)=\mathbf{M}(A)+\mathbf{M}(B)$.
$\left.<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s\right\rangle+\langle\partial B, f, s\rangle$
$<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s>-\partial<B, f, s>$

Flat Distance between Slices in Z

Given integral currents T_{i} in Z then we have $T_{1}-T_{2}=A+\partial B$
where $d_{F}^{Z}\left(T_{1}, T_{2}\right)=\mathbf{M}(A)+\mathbf{M}(B)$.
$<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s>+\langle\partial B, f, s\rangle$
$<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s>-\partial<B, f, s>$
$d_{F}^{Z}\left(<T_{1}, f, s>,<T_{2}, f, s>\right) \leq \mathbf{M}(<A, f, s>)+\mathbf{M}(<B, f, s>)$

Flat Distance between Slices in Z

Given integral currents T_{i} in Z
then we have $T_{1}-T_{2}=A+\partial B$
where $d_{F}^{Z}\left(T_{1}, T_{2}\right)=\mathbf{M}(A)+\mathbf{M}(B)$.
$\left.<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s\right\rangle+\langle\partial B, f, s\rangle$
$<T_{1}, f, s>-<T_{2}, f, s>=<A, f, s>-\partial<B, f, s>$
$d_{F}^{Z}\left(<T_{1}, f, s>,<T_{2}, f, s>\right) \leq \mathbf{M}(<A, f, s>)+\mathbf{M}(<B, f, s>)$
Since

$$
\int_{s \in \mathbb{R}} \mathbf{M}(<A, f, s>) d s \leq \operatorname{Lip}(f) \mathbf{M}(A)
$$

and

$$
\int_{s \in \mathbb{R}} \mathbf{M}(<B, f, s>) d s \leq \operatorname{Lip}(f) \mathbf{M}(B)
$$

we have,

$$
\begin{gathered}
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{1}, f, s>,<T_{2}, f, s>\right) d s \leq \operatorname{Lip}(f)(\mathbf{M}(A)+\mathbf{M}(B)) \\
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{1}, f, s>,<T_{2}, f, s>\right) d s \leq \operatorname{Lip}(f) d_{F}^{Z}\left(T_{1}, T_{2}\right)
\end{gathered}
$$

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$.

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s\rangle), d,<T, f, s\rangle)$?

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s>), d,<T, f, s>)$?
$\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }}\left(X_{\infty}, d_{\infty}, T_{\infty}\right)$ implies
$\exists Z$ and $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{\infty \#} T_{\infty}\right) \rightarrow 0$.

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s\rangle), d,<T, f, s\rangle)$?
$\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }}\left(X_{\infty}, d_{\infty}, T_{\infty}\right)$ implies
$\exists Z$ and $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{\infty \#} T_{\infty}\right) \rightarrow 0$.
Taking $f_{j}=f \circ \varphi_{j}$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$:
$\operatorname{Slice}\left(M_{j}, f_{j}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, f_{\infty}, s_{\infty}\right)$.

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $\left.d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s\right\rangle\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s\rangle), d,<T, f, s\rangle)$?
$\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }}\left(X_{\infty}, d_{\infty}, T_{\infty}\right)$ implies
$\exists Z$ and $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{\infty \#} T_{\infty}\right) \rightarrow 0$.
Taking $f_{j}=f \circ \varphi_{j}$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$:
$\operatorname{Slice}\left(M_{j}, f_{j}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, f_{\infty}, s_{\infty}\right)$.
Portegies-Sormani: (after significant work) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s\rangle), d,<T, f, s\rangle)$?
$\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }}\left(X_{\infty}, d_{\infty}, T_{\infty}\right)$ implies
$\exists Z$ and $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \# T_{j}}, \varphi_{\infty \#} T_{\infty}\right) \rightarrow 0$.
Taking $f_{j}=f \circ \varphi_{j}$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$:

$$
\operatorname{Slice}\left(M_{j}, f_{j}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, f_{\infty}, s_{\infty}\right)
$$

Portegies-Sormani: (after significant work) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.

Convergence of Slices

If $d_{F}^{Z}\left(T_{j}, T_{\infty}\right) \rightarrow 0$ and $f: Z \rightarrow \mathbb{R}$ has $\operatorname{Lip}(f) \leq 1$ then

$$
\int_{s \in \mathbb{R}} d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) d s \rightarrow 0
$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{F}^{Z}\left(<T_{j}, f, s>,<T_{\infty}, f, s>\right) \rightarrow 0$. What about slices of converging integral current spaces where Slice $((X, d, T), f, s)=(\operatorname{set}(<T, f, s\rangle), d,<T, f, s\rangle)$?
$\left(X_{j}, d_{j}, T_{j}\right) \xrightarrow{\text { SWIF }}\left(X_{\infty}, d_{\infty}, T_{\infty}\right)$ implies
$\exists Z$ and $\varphi_{j}: X_{j} \rightarrow Z$ s.t. $d_{F}^{Z}\left(\varphi_{j \#} T_{j}, \varphi_{\infty \#} T_{\infty}\right) \rightarrow 0$.
Taking $f_{j}=f \circ \varphi_{j}$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$:

$$
\operatorname{Slice}\left(M_{j}, f_{j}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, f_{\infty}, s_{\infty}\right) .
$$

Portegies-Sormani: (after significant work) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
[PS] also define a sliced filling volume and estimate it.

Balls and $\mathcal{V F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.

Balls and $\mathcal{V F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$
$\geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right)$

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)
\end{aligned}
$$

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)=\mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)=\mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

So all are equality

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)=\mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

So all are equality and so $\lim _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right)=\mathbf{M}\left(B\left(p_{\infty}, r\right)\right.$.

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{inc}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)=\mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

So all are equality and so $\lim _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right)=\mathbf{M}\left(B\left(p_{\infty}, r\right)\right.$. Portegies a la Fukaya: control eigenvalues of the spaces: $\lim \sup _{j \rightarrow \infty} \lambda_{k}\left(M_{j}\right) \rightarrow \lambda_{k}\left(M_{\infty}\right)$.

Balls and $\mathcal{V} \mathcal{F}$ Limits

Portegies-Sormani: (from last slide) $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ and $p_{j} \in M_{j}$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$:
a subseq $\operatorname{Slice}\left(M_{j}, \rho_{p_{j}}, s\right) \xrightarrow{\text { SWIF }} \operatorname{Slice}\left(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}\right)$.
So $B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} B\left(p_{\infty}, s\right)$ and $\partial B\left(p_{j}, s\right) \xrightarrow{\text { SWIF }} \partial B\left(p_{\infty}, s\right)$.
So liminf $\operatorname{jim}^{\mathbf{~}} \mathbf{M}\left(B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(B\left(p_{\infty}, s\right)\right)$ and
$\liminf _{j \rightarrow \infty} \mathbf{M}\left(\partial B\left(p_{j}, s\right)\right) \geq \mathbf{M}\left(\partial B\left(p_{\infty}, s\right)\right)$.
Volume Preserving Intrinsic Flat Convergence $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$:

$$
M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { and } \lim _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)=\mathbf{M}\left(M_{\infty}\right)
$$

This implies $\mathbf{M}\left(M_{\infty}\right) \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j}\right)$

$$
\begin{aligned}
& \geq \liminf _{j \rightarrow \infty} \mathbf{M}\left(B_{j}\right)+\liminf _{j \rightarrow \infty} \mathbf{M}\left(M_{j} \backslash B_{j}\right) \\
& \geq \mathbf{M}\left(B_{\infty}\right)+\mathbf{M}\left(M_{\infty} \backslash B_{\infty}\right)=\mathbf{M}\left(M_{\infty}\right)
\end{aligned}
$$

So all are equality and so $\lim _{j \rightarrow \infty} \mathbf{M}\left(B\left(p_{j}, r\right)\right)=\mathbf{M}\left(B\left(p_{\infty}, r\right)\right.$. Portegies a la Fukaya: control eigenvalues of the spaces:

$$
\limsup _{j \rightarrow \infty} \lambda_{k}\left(M_{j}\right) \rightarrow \lambda_{k}\left(M_{\infty}\right)
$$

Jauregui-Lee prove areas of certain surfaces converge
by studying the integrals of the masses of slices.

IAS Emerging Topic Conjecture [Gromov-S]

 Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 .

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]:{\lim \inf _{j \rightarrow \infty}}^{\operatorname{Vol}}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$.

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]: \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 .
 and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]:{\lim \inf _{j \rightarrow \infty}}^{\operatorname{Vol}}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]$: $\lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]$: $\lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]$: $\lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture [Gromov-S]

 Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]:{\lim \inf _{j \rightarrow \infty}}^{\operatorname{Vol}}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected?

IAS Emerging Topic Conjecture [Gromov-S]

 Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]:{\lim \inf _{j \rightarrow \infty}}^{\operatorname{Vol}}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics?

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by [SW]: $\lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{Min}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints,

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$ by [Wenger]: subseq $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$ possibly 0 . and by $[\mathrm{SW}]:{\lim \inf _{j \rightarrow \infty}}^{\operatorname{Vol}}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right)$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable.
Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

$$
\begin{aligned}
& \text { by }\left[\text { Wenger]: subseq } M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { possibly } 0\right. \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : } \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right) \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : If } M_{\infty} \neq 0 \text { then it is } m \text {-rectifiable. }
\end{aligned}
$$

Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
Given $p, q \in M_{\infty}, \exists p_{j}, q_{j} \in M_{j}$ converging to p, q.
Taking x_{j} to be a midpoint between p_{j} and q_{j},

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

$$
\begin{aligned}
& \text { by }\left[\text { Wenger]: subseq } M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { possibly } 0\right. \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : } \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right) \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : If } M_{\infty} \neq 0 \text { then it is } m \text {-rectifiable. }
\end{aligned}
$$

Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
Given $p, q \in M_{\infty}, \exists p_{j}, q_{j} \in M_{j}$ converging to p, q.
Taking x_{j} to be a midpoint between p_{j} and q_{j},
can we show $\operatorname{FillVol}\left(B\left(x_{j}, r\right)\right) \geq C_{V, D, A} r^{3}$?

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

$$
\begin{aligned}
& \text { by [Wenger]: subseq } M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { possibly } 0 \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : } \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right) . \\
& \text { and by }[\mathrm{SW}]: \text { If } M_{\infty} \neq 0 \text { then it is } m \text {-rectifiable. }
\end{aligned}
$$

Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$
where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
Given $p, q \in M_{\infty}, \exists p_{j}, q_{j} \in M_{j}$ converging to p, q.
Taking x_{j} to be a midpoint between p_{j} and q_{j}, can we show $\operatorname{FillVol}\left(B\left(x_{j}, r\right)\right) \geq C_{V, D, A} r^{3}$? OPEN.
We must use x_{j} a midpoint because other points can disappear.

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

$$
\begin{aligned}
& \text { by [Wenger]: subseq } M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { possibly } 0 \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : } \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right) . \\
& \text { and by }[\mathrm{SW}]: \text { If } M_{\infty} \neq 0 \text { then it is } m \text {-rectifiable. }
\end{aligned}
$$

Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$
where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.
How can we show M_{∞} is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
Given $p, q \in M_{\infty}, \exists p_{j}, q_{j} \in M_{j}$ converging to p, q.
Taking x_{j} to be a midpoint between p_{j} and q_{j}, can we show $\operatorname{Fill} \operatorname{Vol}\left(B\left(x_{j}, r\right)\right) \geq C_{V, D, A} r^{3}$? OPEN.
We must use x_{j} a midpoint because other points can disappear.
Perhaps use sliced filling volumes with $f_{j}(\cdot)=d_{j}\left(\cdot, p_{j}\right)$?

IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

$$
\begin{aligned}
& \text { by [Wenger]: subseq } M_{j} \xrightarrow{\text { SWIF }} M_{\infty} \text { possibly } 0 \text {. } \\
& \text { and by }[\mathrm{SW}] \text { : } \lim \inf _{j \rightarrow \infty} \operatorname{Vol}\left(M_{j}\right) \geq \mathbf{M}\left(M_{\infty}\right) . \\
& \text { and by }[\mathrm{SW}]: \text { If } M_{\infty} \neq 0 \text { then it is } m \text {-rectifiable. }
\end{aligned}
$$

Conjecture: If in addition we have $\operatorname{Scalar}_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$
where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.
How can we show M_{∞} is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
Given $p, q \in M_{\infty}, \exists p_{j}, q_{j} \in M_{j}$ converging to p, q.
Taking x_{j} to be a midpoint between p_{j} and q_{j}, can we show $\operatorname{Fill} \operatorname{Vol}\left(B\left(x_{j}, r\right)\right) \geq C_{V, D, A} r^{3}$? OPEN.
We must use x_{j} a midpoint because other points can disappear.
Perhaps use sliced filling volumes with $f_{j}(\cdot)=d_{j}\left(\cdot, p_{j}\right)$? OPEN

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$
So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$
So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$
So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean?

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$
So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min}_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{p} M$, which is a normed vector space:

$$
\left(B\left(p, r_{i}\right), d / r_{i},\left[\left[B\left(p, r_{i}\right)\right]\right]\right) \xrightarrow{\text { SWIF }} B(0,1) \subset T_{p} M
$$

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{p} M$, which is a normed vector space:

$$
\left(B\left(p, r_{i}\right), d / r_{i},\left[\left[B\left(p, r_{i}\right)\right]\right]\right) \xrightarrow{\text { SWIF }} B(0,1) \subset T_{p} M
$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{p} M$, which is a normed vector space:

$$
\left(B\left(p, r_{i}\right), d / r_{i},\left[\left[B\left(p, r_{i}\right)\right]\right]\right) \xrightarrow{\text { SWIF }} B(0,1) \subset T_{p} M
$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.
Note that $\lambda(p)=1$ if $T_{p} M$ is Euclidean, so $\left\|T_{\infty}\right\|=1 \cdot \theta \cdot \mathbb{H}^{3}$.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$ Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{p} M$, which is a normed vector space:

$$
\left(B\left(p, r_{i}\right), d / r_{i},\left[\left[B\left(p, r_{i}\right)\right]\right]\right) \xrightarrow{\text { SWIF }} B(0,1) \subset T_{p} M
$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.
Note that $\lambda(p)=1$ if $T_{p} M$ is Euclidean, so $\left\|T_{\infty}\right\|=1 \cdot \theta \cdot \mathbb{H}^{3}$.
Conjecture: the weight $\theta=1$.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_{j}^{3} have $\operatorname{Vol}\left(M_{j}^{3}\right) \leq V$ and $\operatorname{Diam}\left(M_{j}^{3}\right) \leq D$

So a subsequence $M_{j} \xrightarrow{\text { SWIF }} M_{\infty}$.
Conjecture: If in addition we have Scalar $_{j} \geq 0$ and $\operatorname{MinA}_{j} \geq A$ where $\operatorname{Min} A_{j}=\min \left\{\operatorname{Area}(\Sigma):\right.$ closed min surfaces $\left.\Sigma \subset M_{j}^{3}\right\}$
Then M_{∞} has generalized "Scalar ≥ 0 "
Furthermore: we believe that we have $M_{j} \xrightarrow{\mathcal{V F}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean?
By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{p} M$, which is a normed vector space:

$$
\left(B\left(p, r_{i}\right), d / r_{i},\left[\left[B\left(p, r_{i}\right)\right]\right]\right) \xrightarrow{\text { SWIF }} B(0,1) \subset T_{p} M
$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.
Note that $\lambda(p)=1$ if $T_{p} M$ is Euclidean, so $\left\|T_{\infty}\right\|=1 \cdot \theta \cdot \mathbb{H}^{3}$.
Conjecture: the weight $\theta=1$. So $\left\|T_{\infty}\right\|=\mathbb{H}^{3}$.
Open: Prove $\left\|T_{\infty}\right\|=\mathbb{H}^{3}$. (Ricci case by Colding "Volumes....).

