

Christina Sormani

CUNY GC and Lehman College

Lectures III-IV: Proving Intrinsic Flat Convergence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Lecture 1: Geometric Notions of Convergence DONE! Reviewed C^k , C^0 , Lip, and GH Convergence, Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}), Volume Preserving Intrinsic Flat Convergence (\mathcal{VF}) Allen-Perales-Sormani (VADB) Convergence

Lecture 1: Geometric Notions of Convergence DONE! Reviewed C^k , C^0 , Lip, and GH Convergence, Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}), Volume Preserving Intrinsic Flat Convergence (\mathcal{VF}) Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE! Consider: Three Dimensional Manifolds M_j^3 with $Scal \ge H$ and their Limit Spaces M_∞ Which Geometric Properties of M_j^3 with $Scal \ge H$ persist on their Limit Spaces M_∞ ? Which Rigidity Theorems for M^3 with $Scal \ge H$ have Geometric Stability? [Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lecture 1: Geometric Notions of Convergence DONE! Reviewed C^k , C^0 , Lip, and GH Convergence, Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}), Volume Preserving Intrinsic Flat Convergence (\mathcal{VF}) Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE! Consider: Three Dimensional Manifolds M_i^3 with $Scal \ge H$ and their Limit Spaces M_{∞} Which Geometric Properties of M_i^3 with $Scal \ge H$ persist on their Limit Spaces M_{∞} ? Which Rigidity Theorems for M^3 with Scal > Hhave Geometric Stability? [Conjectures on Conv and Scalar (2021) arXiv: 2103.10093] Lectures 3&4: Techniques to Apply to Prove Convergence See https://sites.google.com/site/intrinsicflatconvergence/

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $Vol(M_j) \rightarrow Vol(M_\infty)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $Vol(M_j) \rightarrow Vol(M_\infty)$. Defn: $M_j \xrightarrow{\mathcal{F}} M_\infty$ if $d_{\mathcal{F}}(M_j, M_\infty) = d_{SWIF}(M_j, M_\infty) \rightarrow 0$:

200

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N :

$$|N_1 - N_2|_{\flat} = \inf \left\{ M(\underline{A}) + M(\underline{B}) \right\}$$

where \underline{A} and \underline{B} are chains
such that $\underline{A} + \partial \underline{B} = N_1 - N_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are **currents** acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\omega(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) =$

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are **currents** acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M$

A 日 ト 4 周 ト 4 目 ト 4 目 ト 9 Q Q

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are **currents** acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi)$

A 日 ト 4 周 ト 4 目 ト 4 目 ト 9 Q Q

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are **currents** acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$

(日本本語を本書を本書を入事)の(で)

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are **currents** acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:

$$\partial [[N^m]](\omega) = [[N^m]](d\omega) = \int_N d\omega = \int_{\partial N} \omega = [[\partial N^m]](\omega)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω , in \mathbb{R}^N . They view a submanifold $\varphi(M^m)$ as an *m*-current $\varphi_{\#}[[M^m]]$: $\varphi_{\#}[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$ where ω is an *m*-form. $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:

$$\partial [[N^m]](\omega) = [[N^m]](d\omega) = \int_N d\omega = \int_{\partial N} \omega = [[\partial N^m]](\omega)$$

where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge \wedge d\pi_m$, where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.

Whitney (1957): Flat norm in \mathbb{R}^N : $|N_1 - N_2|_{\flat} = \inf \left\{ \mathsf{M}(\mathsf{A}) + \mathsf{M}(\mathsf{B}) \right\}$ such that $\mathsf{A} + \partial \mathsf{B} = N_1 - N_2$.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ \mathsf{M}(\mathsf{A}) + \mathsf{M}(\mathsf{B}) \right\}$
such that $\mathsf{A} + \partial \mathsf{B} = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ \mathsf{M}(\mathsf{A}) + \mathsf{M}(\mathsf{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

イロト 不得 トイヨト イヨト

э

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable.

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ \mathsf{M}(\mathsf{A}) + \mathsf{M}(\mathsf{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

人口 医水黄 医水黄 医水黄素 化甘油

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ M(\underline{A}) + M(\underline{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

・ロット (雪) ・ (日) ・ (日) ・ (日)

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$. Defn: The mass $\mathbf{M}(T) = ||T|| (\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i))$.

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ M(\underline{A}) + M(\underline{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$. Defn: The mass $\mathbf{M}(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)).$ **Compactness Thm [FF]:** If integral currents T_i have $spt(T_i) \subset K$ compact, and $\mathbf{M}(T_i) \leq V$ and $\mathbf{M}(\partial T_i) \leq A$ then \exists subseq $T_{i_{\mu}}$ and an integral current T_{∞} s.t. $|T_{i_{\mu}} - T_{\infty}|_{b} \rightarrow 0$.

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ M(\underline{A}) + M(\underline{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$. Defn: The mass $\mathbf{M}(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)).$ **Compactness Thm [FF]:** If integral currents T_i have $spt(T_i) \subset K$ compact, and $\mathbf{M}(T_i) \leq V$ and $\mathbf{M}(\partial T_i) \leq A$ then \exists subseq $T_{i_{\mu}}$ and an integral current T_{∞} s.t. $|T_{i_{\mu}} - T_{\infty}|_{b} \rightarrow 0$. Furthermore: $\partial T_i \xrightarrow{\mathcal{F}} \partial T_{\infty}$

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ M(\underline{A}) + M(\underline{B}) \right\}$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$. Defn: The mass $\mathbf{M}(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)).$ **Compactness Thm [FF]:** If integral currents T_i have $spt(T_i) \subset K$ compact, and $\mathbf{M}(T_i) \leq V$ and $\mathbf{M}(\partial T_i) \leq A$ then \exists subseq T_{i_k} and an integral current T_{∞} s.t. $|T_{i_k} - T_{\infty}|_{\flat} \to 0$. Furthermore: $\partial T_i \xrightarrow{\mathcal{F}} \partial T_{\infty}$ and $\lim \inf_{i \to \infty} \mathbf{M}(T_i) \geq \mathbf{M}(T_{\infty})$

Whitney (1957): Flat norm in
$$\mathbb{R}^N$$
:
 $|N_1 - N_2|_{\flat} = \inf \left\{ \mathsf{M}(\mathsf{A}) + \mathsf{M}(\mathsf{B}) \right\}$

such that $\mathbf{A} + \partial \mathbf{B} = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now **A** and **B** are integral currents acting on diff forms, ω , in \mathbb{R}^N . Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$. Defn: The mass $\mathbf{M}(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)).$ **Compactness Thm [FF]:** If integral currents T_i have $spt(T_i) \subset K$ compact, and $\mathbf{M}(T_i) \leq V$ and $\mathbf{M}(\partial T_i) \leq A$ then \exists subseq T_{i_k} and an integral current T_{∞} s.t. $|T_{i_k} - T_{\infty}|_{\flat} \to 0$. Furthermore: $\partial T_i \xrightarrow{\mathcal{F}} \partial T_\infty$ and $\lim \inf_{i \to \infty} \mathbf{M}(T_i) \geq \mathbf{M}(T_\infty)$ and $T_i(\omega) \to T_{\infty}(\omega)$ for any diff form ω .

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, Z,

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz.

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, *Z*, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) =$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, *Z*, replace diff forms $f \ d\pi_1 \land \cdots \land d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \land \cdots \land d(\pi_m \circ \varphi)$

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, *Z*, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current *T* acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) =$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms: $\varphi_{\#}[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$ Given a current T acting on form ω define $\partial T: \partial T(\omega) = T(d\omega)$ where $d(f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \ d\pi_1 \land \dots \land d\pi_m$ with tuples (f, π_1, \dots, π_m) s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, \dots, \pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \land \dots \land d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, \dots, \pi_m) = (1, f, \pi_1, \dots, \pi_m)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$. **Ambrosio-Kirchheim (2000):** an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f,\pi_1,...,\pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$. Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples (f, π_1, \dots, π_m) s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f,\pi_1,...,\pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$. Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples (f, π_1, \dots, π_m) s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^m \to Z$, define a current acting on tuples: $\varphi_{\#}[[M]](f,\pi_1,...,\pi_m) = \int_{M} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$. Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$. Mass is not the weighted volume in Ambrosio-Kirchheim Theory!

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume:
$$\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(\mathcal{A}_i)) < \infty.$$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume:
$$\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Defn [AK]: The mass $\mathbf{M}(T) = ||T||(Z)$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume:
$$\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty.$$

Defn [AK]: The mass
$$\mathbf{M}(T) = ||T||(Z)$$

where $||T|| = \mu_T$ is the mass measure of T

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume:
$$\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty.$$

Defn [AK]: The mass M(T) = ||T||(Z)where $||T|| = \mu_T$ is the mass measure of Twhich is the smallest measure μ s.t.

$$|\varphi_{\#}[[M]](\operatorname{fd}\pi_{1}\wedge\cdots\wedge\operatorname{d}\pi_{m})|\leq \prod_{i=1}^{m}\operatorname{Lip}(\pi_{i})\int_{\varphi(M)}|f\circ\varphi|\,\mu$$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \mu_T$ is the mass measure of Twhich is the smallest measure μ s.t. $|\varphi_{\#}[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^m Lip(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$ **Thm [AK]:** The mass measure $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \mu_T$ is the mass measure of Twhich is the smallest measure μ s.t. $|\varphi_{\#}[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^m Lip(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$ **Thm [AK]:** The mass measure $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \mu_T$ is the mass measure of Twhich is the smallest measure μ s.t. $|\varphi_{\#}[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^m Lip(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$ **Thm [AK]:** The mass measure $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \text{set }T)$ where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \mu_T$ is the mass measure of Twhich is the smallest measure μ s.t. $|\varphi_{\#}[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^m Lip(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$ **Thm [AK]:** The mass measure $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \text{set}T)$ where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}.$$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

They define mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0\}.$$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

They define mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$$

Note: set(T) is cntbly rectifiable: \mathcal{H}^m (set(T) \ $\bigcup_{i=1}^{\infty} \varphi_i(A_i)$) = 0.

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

They define mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0\}.$$

Note: set(T) is cntbly rectifiable: $\mathcal{H}^m(set(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0.$

Compactness Thm [AK]: If integral currents T_j have set $(T_j) \subset K$ compact, and $\mathbf{M}(T_j) \leq V$ and $\mathbf{M}(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_{∞} s.t. $T_j(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

They define mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0\}.$$

Note: set(T) is cntbly rectifiable: $\mathcal{H}^m(set(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0.$

Compactness Thm [AK]: If integral currents T_j have set $(T_j) \subset K$ compact, and $\mathbf{M}(T_j) \leq V$ and $\mathbf{M}(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_{∞} s.t. $T_j(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$ and $\partial T_j(\eta) \rightarrow \partial T_{\infty}(\eta) \forall \eta$

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m)=\sum_{i=1}^{\infty}a_i\int_{\mathcal{A}_i}(f\circ\varphi)\,d(\pi_1\circ\varphi)\wedge\cdots\wedge d(\pi_m\circ\varphi)$$

They define mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}.$$

Note: set(*T*) is cntbly rectifiable: \mathcal{H}^m (set(*T*) \ $\bigcup_{i=1}^{\infty} \varphi_i(A_i)$) = 0.

Compactness Thm [AK]: If integral currents T_j have set $(T_j) \subset K$ compact, and $\mathbf{M}(T_j) \leq V$ and $\mathbf{M}(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_{∞} s.t. $T_j(\omega) \rightarrow T_{\infty}(\omega) \forall \omega$ and $\partial T_j(\eta) \rightarrow \partial T_{\infty}(\eta) \forall \eta$ and $\liminf_{j \to \infty} \mathbf{M}(T_j) \geq \mathbf{M}(T_{\infty})$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{\mathcal{M}} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$

A D N A 目 N A E N A E N A B N A C N

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \underset{vol}{\mathsf{M}} ([\mathsf{A}]) + \underset{vol}{\mathsf{M}} ([\mathsf{B}]) : [\mathsf{A}] + \partial_{\mathsf{B}} = \varphi_{1\#} [[\mathsf{M}_{1}^{m}]] - \varphi_{2\#} [[\mathsf{M}_{2}^{m}]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \underset{vol}{\mathsf{M}} ([\mathsf{A}]) + \underset{vol}{\mathsf{M}} ([\mathsf{B}]) : [\mathsf{A}] + \partial_{\mathsf{B}} = \varphi_{1\#} [[\mathsf{M}_{1}^{m}]] - \varphi_{2\#} [[\mathsf{M}_{2}^{m}]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \rightarrow M_2$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf:

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]].$

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]].$ Let $F = \varphi_2^{-1} \circ \varphi_1$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]].$ Let $F = \varphi_2^{-1} \circ \varphi_1$.

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$. Next: We need to define the SWIF limit spaces!

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$. Next: We need to define the SWIF limit spaces!

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]] \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

 $d_F^Z(\varphi_{1\#}[[M_1^m]], \varphi_{2\#}[[M_2^m]])$ is the inf over integral currents A B

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#}[[\mathsf{M}_1^m]] - \varphi_{2\#}[[\mathsf{M}_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$ $\varphi_{\#}[[M]](f, \pi_1, ..., \pi_m) = \int_{M} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$ and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$. Pf: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}[[M_1]] = \varphi_{2\#}[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$. Next: We need to define the SWIF limit spaces!

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined (m-1)-rectifiable boundary. The charts are oriented and have integer valued weights, θ ,

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined (m-1)-rectifiable boundary. The charts are oriented and have integer valued weights, θ ,

Now we can truly define integral current spaces

Recall Flat limits of oriented submanifolds are integral currents:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in *Z*. **Key New Idea:** generalize oriented Riemannian Manifolds.

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X. Furthermore: $\mathbf{M}(M) = \mathbf{M}(T)$ and $\partial M = (set(\partial T), d, \partial T)$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t. $T(f, \pi_1, \dots, \pi_m) = \sum_{i=1}^{\infty} a_i \int (f \circ \varphi_i) d(\pi_1 \circ \varphi_i) \wedge \dots \wedge d(\pi_m \circ \varphi_i)$

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X. Furthermore: $\mathbf{M}(M) = \mathbf{M}(T)$ and $\partial M = (set(\partial T), d, \partial T)$. Thus X is entbly \mathcal{H}^m rectifiable: it has entbly many pairwise disjoint Lip charts $\varphi_i : A_i \to X$ s.t. $\mathcal{H}^m(X \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0$.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p, q) = \inf\{L_g(C): C: [0, 1] \rightarrow M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d_M, \partial T)$.

- ロ ト - 4 回 ト - 4 □

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d_M, \partial T)$.

- ロ ト - 4 回 ト - 4 □

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d_M, \partial T)$. A compact oriented manifold (M^m, g) is an integral current space $(M, d_M, [[M]])$ with weight $\theta = 1$ and $\mathbf{M}(U) = \operatorname{Vol}(U) = \mathcal{H}^m(U)$.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \in O} ||T|| (B(z,r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d_M, \partial T)$. A compact oriented manifold (M^m, g) is an integral current space $(M, d_M, [[M]])$ with weight $\theta = 1$ and $\mathbf{M}(U) = \operatorname{Vol}(U) = \mathcal{H}^m(U)$. Its boundary $(\partial M, d_M, [[\partial M]])$ has the restricted distance d_M .

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is: $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \rightarrow Z \right\}$ where $\varphi_{\#} T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$,

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is: $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} \mathcal{T}_1, \varphi_{2\#} \mathcal{T}_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$. Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}T_2)$ is the Federer-Fleming Flat dist $= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{area}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$ M_{l} φ_{I} 2 a metric space with oriented Eweighted charts well. also an integral current space 2

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \rightarrow M_2$:

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$: $d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F_{\#}T_1 = T_2.$

▲□▶▲□▶▲□▶▲□▶ = のへの

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} \mathsf{T}_1, \varphi_{2\#} \mathsf{T}_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \rightarrow M_2$: $d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F_{\#}T_1 = T_2.$

Pf:

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$: $d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F_{\#}T_1 = T_2.$

Pf: Show inf achieved: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}T_1 = \varphi_{2\#}T_2.$

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$: $d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F_{\#}T_1 = T_2.$

Pf: Show inf achieved: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}T_1 = \varphi_{2\#}T_2.$ So $\operatorname{set}(\varphi_{1\#}T_1) = \operatorname{set}(\varphi_{2\#}T_2)$ and $F = \varphi_2^{-1} \circ \varphi_1$ is defined.

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$: $d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F_{\#}T_1 = T_2.$

Pf: Show inf achieved: $\exists \varphi_i : M_i \to Z \text{ s.t. } \varphi_{1\#}T_1 = \varphi_{2\#}T_2.$ So $\operatorname{set}(\varphi_{1\#}T_1) = \operatorname{set}(\varphi_{2\#}T_2)$ and $F = \varphi_2^{-1} \circ \varphi_1$ is defined.

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \underset{area}{\mathsf{M}} (\mathbf{A}) + \underset{vol}{\mathsf{M}} (\mathbf{B}) : \mathbf{A} + \partial \mathbf{B} = \varphi_{1\#} T_1 - \varphi_{2\#} \mathbf{0} \right\}$$

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \underbrace{\mathsf{M}}_{area}(\mathbf{A}) + \underbrace{\mathsf{M}}_{vol}(\mathbf{B}) : \mathbf{A} + \partial \mathbf{B} = \varphi_{1\#} T_1 - \varphi_{2\#} \mathbf{0} \right\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$.

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{0} \right\}$$

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$. **Pf:** Take Z = M, $\varphi_1 = id$, $\mathbf{A} = id_{\#}[[M]] = [[M]]$, and $\mathbf{B} = 0$. \Box

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{0} \right\}$$

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$. **Pf:** Take Z = M, $\varphi_1 = id$, $\mathbf{A} = id_{\#}[[M]] = [[M]]$, and $\mathbf{B} = 0$. \Box **Example:** $d_{SWIF}(\mathbb{S}^m, 0^m) \leq Vol(\mathbb{S}^{m+1})/2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1,\varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{0} \right\}$$

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$. Pf: Take Z = M, $\varphi_1 = id$, $\mathbf{A} = id_{\#}[[M]] = [[M]]$, and $\mathbf{B} = 0$. Example: $d_{SWIF}(\mathbb{S}^m, 0^m) \leq Vol(\mathbb{S}^{m+1})/2$. Pf: Take $Z = \mathbb{S}^{m+1}$ so $\varphi_1 : \mathbb{S}^m \rightarrow \text{Equator} \subset \mathbb{S}^{m+1}$ is dist pres.

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1,\varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{0} \right\}$$

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$. Pf: Take Z = M, $\varphi_1 = id$, $\mathbf{A} = id_{\#}[[M]] = [[M]]$, and $\mathbf{B} = 0$. \Box Example: $d_{SWIF}(\mathbb{S}^m, 0^m) \leq Vol(\mathbb{S}^{m+1})/2$.

Pf: Take $Z = \mathbb{S}^{m+1}$ so $\varphi_1 : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}$ is dist pres. (Note $Z = \mathbb{D}^{m+1}$ fails to have dist. pres $\varphi_1 : \mathbb{S}^m \to Z$).

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} \mathbf{0} \right) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{vol}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{0} \right\}$$

Thm [SW]: If *M* Riemannian then $d_{SWIF}(M^m, 0^m) \leq Vol(M)$. Pf: Take Z = M, $\varphi_1 = id$, $\mathbf{A} = id_{\#}[[M]] = [[M]]$, and $\mathbf{B} = 0$. \Box Example: $d_{SWIF}(\mathbb{S}^m, 0^m) \leq Vol(\mathbb{S}^{m+1})/2$. Pf: Take $Z = \mathbb{S}^{m+1}$ so $\varphi_1 : \mathbb{S}^m \to Equator \subset \mathbb{S}^{m+1}$ is dist pres. (Note $Z = \mathbb{D}^{m+1}$ fails to have dist. pres $\varphi_1 : \mathbb{S}^m \to Z$). Take $\mathbf{B} = [[\mathbb{S}^{m+1}_+]]$ so $\partial \mathbf{B} = \varphi_{1\#}[[\mathbb{S}^m]]$ and $\mathbf{A} = 0$. \Box

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If
$$M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#}T_j, \varphi_{0,j\#}T_0)$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#}T_j, \varphi_{0,j\#}T_0)$ which we can glue along the images $\varphi_{0,j}(M_0)$ to show

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#} T_j, \varphi_{0,j\#} T_0)$ which we can glue along the images $\varphi_{0,j}(M_0)$ to show

 $\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \\ \text{s.t. } d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega).$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#} T_j, \varphi_{0,j\#} T_0)$ which we can glue along the images $\varphi_{0,j}(M_0)$ to show

 $\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \\ \text{s.t. } d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega).$

Thus by Ambrosio-Kirchheim Theory:

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#} T_j, \varphi_{0,j\#} T_0)$ which we can glue along the images $\varphi_{0,j}(M_0)$ to show

 $\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \\ \text{s.t. } d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega).$

Thus by Ambrosio-Kirchheim Theory:

$$M_j \xrightarrow{\text{SWIF}} M_\infty \implies \partial M_j \xrightarrow{\text{SWIF}} \partial M_\infty$$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j \text{ s.t. } d_{SWIF}(M_j, M_0) = d_F^{Z'_j}(\varphi_{j\#} T_j, \varphi_{0,j\#} T_0)$ which we can glue along the images $\varphi_{0,j}(M_0)$ to show

 $\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \\ \text{s.t. } d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega).$

Thus by Ambrosio-Kirchheim Theory:

$$M_{j} \xrightarrow{\text{SWIF}} M_{\infty} \implies \partial M_{j} \xrightarrow{\text{SWIF}} \partial M_{\infty}$$
$$M_{j} \xrightarrow{\text{SWIF}} M_{\infty} \implies \liminf_{j \to \infty} \mathsf{M}(M_{j}) \ge \mathsf{M}(M_{\infty})$$
Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$.

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_L} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_L} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (set(T_{\infty}), d_Z, T_{\infty}) \Box$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_{\infty}), d_Z, T_{\infty}) \square$. **Wenger Compactness Thm:** If $\text{Diam}(M_j) \leq D$ and $\mathbf{M}(M_j) \leq V$ and $\mathbf{M}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ possibly $M_{SWIF} = 0$.

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_{\infty}), d_Z, T_{\infty}) \square$. **Wenger Compactness Thm:** If $\text{Diam}(M_j) \leq D$ and $\mathbf{M}(M_j) \leq V$ and $\mathbf{M}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ possibly $M_{SWIF} = 0$.

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_{\infty}), d_Z, T_{\infty}) \square$. **Wenger Compactness Thm:** If $\text{Diam}(M_j) \leq D$ and $\mathbf{M}(M_j) \leq V$ and $\mathbf{M}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ possibly $M_{SWIF} = 0$. How do we know which regions disappear?

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{i_{\iota}} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov's Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_H^Z(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#}T_j \to T_{\infty}$. set $(T_{\infty}) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_{\infty}), d_Z, T_{\infty}) \square$. **Wenger Compactness Thm:** If $\text{Diam}(M_j) \leq D$ and $\mathbf{M}(M_j) \leq V$ and $\mathbf{M}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ possibly $M_{SWIF} = 0$. How do we know which regions disappear? Use Filling Volumes!

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: FillVol(($\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]$)) $\leq \operatorname{Vol}(\mathbb{S}^{m+1})/2$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Example: FillVol(($\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]$)) $\leq \operatorname{Vol}(\mathbb{S}^{m+1})/2$.

Pf: Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (\operatorname{set}(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M.$ Example: FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) \leq \operatorname{Vol}(\mathbb{S}^{m+1})/2.$ Pf: Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \operatorname{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box Open: Is FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) = \operatorname{Vol}(\mathbb{S}^{m+1})/2?$ Pu Conj

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (\operatorname{set}(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M.$ Example: FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) \leq \operatorname{Vol}(\mathbb{S}^{m+1})/2.$ Pf: Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \operatorname{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box Open: Is FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) = \operatorname{Vol}(\mathbb{S}^{m+1})/2?$ Pu Conj Example: FillVol $((\mathbb{S}^m, d_{\mathbb{D}^{m+1}}, [[\mathbb{S}^m]])) \leq \operatorname{Vol}(\mathbb{D}^{m+1}).$

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (\operatorname{set}(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M.$ Example: FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) \leq \operatorname{Vol}(\mathbb{S}^{m+1})/2.$ Pf: Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \operatorname{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box Open: Is FillVol $((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) = \operatorname{Vol}(\mathbb{S}^{m+1})/2?$ Pu Conj Example: FillVol $((\mathbb{S}^m, d_{\mathbb{D}^{m+1}}, [[\mathbb{S}^m]])) \leq \operatorname{Vol}(\mathbb{D}^{m+1}).$ Pf: Take $N = \mathbb{D}^{m+1}_+$ so $F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \Box

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M.$ Example: FillVol(($\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]$)) $\leq \operatorname{Vol}(\mathbb{S}^{m+1})/2$. **Pf:** Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box **Open:** Is **FillVol**(($\mathbb{S}^m, d_{\mathbb{S}^m}$, [[\mathbb{S}^m]])) = Vol(\mathbb{S}^{m+1})/2? Pu Conj Example: FillVol(($\mathbb{S}^m, d_{\mathbb{D}^{m+1}}, [[\mathbb{S}^m]]$)) < Vol(\mathbb{D}^{m+1}). **Pf:** Take $N = \mathbb{D}^{m+1}_{\perp}$ so $F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \Box **Thm:** If B(p, r) is a ball in an integral current space M then for a.e. r > 0 ($B(p, r), d_M, [[B(p, r)]]$) is an integral current space

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M$. Example: FillVol(($\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]$)) $\leq \operatorname{Vol}(\mathbb{S}^{m+1})/2$. **Pf:** Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box **Open:** Is **FillVol**(($\mathbb{S}^m, d_{\mathbb{S}^m}$, [[\mathbb{S}^m]])) = Vol(\mathbb{S}^{m+1})/2? Pu Conj Example: FillVol(($\mathbb{S}^m, d_{\mathbb{D}^{m+1}}, [[\mathbb{S}^m]]$)) < Vol(\mathbb{D}^{m+1}). **Pf:** Take $N = \mathbb{D}^{m+1}_+$ so $F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \Box **Thm:** If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p,r), d_M, [[B(p,r)]]) = (\partial B(p,r), d_M, [[\partial B(p,r)]]),$

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \text{ and } F_{\#} \partial T_N = T_M.$ Example: FillVol(($\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]$)) $\leq \operatorname{Vol}(\mathbb{S}^{m+1})/2$. **Pf:** Take $N = \mathbb{S}^{m+1}_+$ so $F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+$ is dist pres \Box **Open:** Is **FillVol**(($\mathbb{S}^m, d_{\mathbb{S}^m}$, [[\mathbb{S}^m]])) = Vol(\mathbb{S}^{m+1})/2? Pu Conj Example: FillVol(($\mathbb{S}^m, d_{\mathbb{D}^{m+1}}, [[\mathbb{S}^m]]$)) < Vol(\mathbb{D}^{m+1}). **Pf:** Take $N = \mathbb{D}^{m+1}_+$ so $F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1}$ is dist pres \Box **Thm:** If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p,r), d_M, [[B(p,r)]]) = (\partial B(p,r), d_M, [[\partial B(p,r)]])$, and $\mathsf{FillVol}((\partial(B(p,r),d_M,[[B(p,r)]])) \leq \mathsf{M}(B(p,r)).$

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#} \partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 ($B(p, r), d_M, [[B(p, r)]]$) is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]])$, and **FillVol**(($\partial(B(p, r), d_M, [[B(p, r)]])) \le \mathbf{M}(B(p, r))$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]])$, and **FillVol** $((\partial(B(p, r), d_M, [[B(p, r)]])) \le \mathbf{M}(B(p, r))$. **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]])$, and **FillVol** $((\partial(B(p, r), d_M, [[B(p, r)]])) \le \mathbf{M}(B(p, r))]$. **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$. **Coro:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{FillVol}(\partial B(p, r))/r^m > 0$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]])$, and **FillVol** $((\partial(B(p, r), d_M, [[B(p, r)]])) \le \mathbf{M}(B(p, r))]$. **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$. **Coro:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{FillVol}(\partial B(p, r))/r^m > 0$. This corollary was applied by S-Wenger Matveev-Portegies to prove **Thm:** $M_{GH} = M_{SWIF}$ for M_j with $\operatorname{Vol}(M_j) \ge V$ and $\operatorname{Ricci} \ge H$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]])$, and **FillVol** $((\partial(B(p, r), d_M, [[B(p, r)]])) \le M(B(p, r))]$. **Recall:** $p \in set(T)$ if $\liminf_{r \to 0} M(B(p, r))/r^m > 0$. **Coro:** $p \in set(T)$ if $\liminf_{r \to 0} FillVol(\partial B(p, r))/r^m > 0$. This corollary was applied by S-Wenger Matveev-Portegies to prove **Thm:** $M_{GH} = M_{SWIF}$ for M_j with $Vol(M_j) \ge V$ and $\operatorname{Ricci} \ge H$. Pf: Perelman Colding Gv: $\exists C_{H,V}^m$ s.t. **FillVol** $(\partial B(p, r)) \ge C_{V,H}^m r^m$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p,r), d_M, [[B(p,r)]]) = (\partial B(p,r), d_M, [[\partial B(p,r)]])$, and **FillVol**($(\partial(B(p, r), d_M, [[B(p, r)]])) < \mathbf{M}(B(p, r)).$ **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$. **Coro:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \operatorname{FillVol}(\partial B(p, r))/r^m > 0$. This corollary was applied by S-Wenger Matveev-Portegies to prove **Thm:** $M_{GH} = M_{SWIF}$ for M_i with $Vol(M_i) \ge V$ and $Ricci \ge H$. Pf: Perelman Colding Gv: $\exists C_{HV}^m$ s.t. FillVol $(\partial B(p, r)) \geq C_{VH}^m r^m$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_j \xrightarrow{\text{SWIF}} B_{\infty} \implies \text{FillVol}(\partial B_j) \rightarrow \text{FillVol}(\partial B_{\infty})$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p,r), d_M, [[B(p,r)]]) = (\partial B(p,r), d_M, [[\partial B(p,r)]])$, and **FillVol**($(\partial(B(p, r), d_M, [[B(p, r)]])) < \mathbf{M}(B(p, r)).$ **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$. **Coro:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \operatorname{FillVol}(\partial B(p, r))/r^m > 0$. This corollary was applied by S-Wenger Matveev-Portegies to prove **Thm:** $M_{GH} = M_{SWIF}$ for M_i with $Vol(M_i) \ge V$ and $Ricci \ge H$. Pf: Perelman Colding Gv: $\exists C_{HV}^m$ s.t. FillVol $(\partial B(p, r)) \geq C_{VH}^m r^m$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_j \xrightarrow{\text{SWIF}} B_{\infty} \implies \text{FillVol}(\partial B_j) \rightarrow \text{FillVol}(\partial B_{\infty})$.

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (set(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_{\#}\partial T_N = T_M$.

Thm: If B(p, r) is a ball in an integral current space M then for a.e. r > 0 $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space and so is $\partial(B(p,r), d_M, [[B(p,r)]]) = (\partial B(p,r), d_M, [[\partial B(p,r)]])$, and **FillVol**($(\partial(B(p, r), d_M, [[B(p, r)]])) < \mathbf{M}(B(p, r)).$ **Recall:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \mathbf{M}(B(p, r))/r^m > 0$. **Coro:** $p \in \operatorname{set}(T)$ if $\liminf_{r \to 0} \operatorname{FillVol}(\partial B(p, r))/r^m > 0$. This corollary was applied by S-Wenger Matveev-Portegies to prove **Thm:** $M_{GH} = M_{SWIF}$ for M_i with $Vol(M_i) \ge V$ and $Ricci \ge H$. Pf: Perelman Colding Gv: $\exists C_{HV}^m$ s.t. FillVol $(\partial B(p, r)) \geq C_{VH}^m r^m$. combined with Corollary above and Portegies-Sormani (next slide) which says $B_j \xrightarrow{\text{SWIF}} B_{\infty} \implies \text{FillVol}(\partial B_j) \rightarrow \text{FillVol}(\partial B_{\infty})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_j^m \xrightarrow{\text{SWIF}} M_{\infty}^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_{\infty}^m)$. Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \leq d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_j^m \xrightarrow{\text{SWIF}} M_{\infty}^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_{\infty}^m)$. Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \leq d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

 $\mathsf{M}(A) + \mathsf{M}(B) \leq d_{SWIF}(M_1^m, M_2^m) + \epsilon/2.$

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \leq d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \leq d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. $\partial A = \partial \varphi_{1\#} T_1 - \partial \varphi_{2\#} T_2 - \partial \partial B = \varphi_{1\#} \partial T_1 - \varphi_{2\#} \partial T_2.$

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_j^m \xrightarrow{\text{SWIF}} M_{\infty}^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_{\infty}^m).$

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

4. Glue N_1^m to N_2^m along ∂M_2^m to obtain $N_{1,2}^m$ s.t. $\partial N_{1,2}^m = \partial M_1^m$

Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_j^m \xrightarrow{\text{SWIF}} M_{\infty}^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_{\infty}^m).$

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

4. Glue N_1^m to N_2^m along ∂M_2^m to obtain $N_{1,2}^m$ s.t. $\partial N_{1,2}^m = \partial M_1^m$ $\mathbf{M}(N_{1,2}) \leq \mathbf{M}(N_1^m) + \mathbf{M}(N_2^m) \leq$ Filling Volumes and SWIF Limits [Portegies-Sormani]: Thm: $M_j^m \xrightarrow{\text{SWIF}} M_{\infty}^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_{\infty}^m).$

Proof: We need only show that for any fixed $\epsilon > 0$

 $\mathsf{FillVol}(\partial M_1^m) \le d_{SWIF}(M_1^m, M_2^m) + \mathsf{FillVol}(\partial M_2^m) + \epsilon.$

4. Glue N_1^m to N_2^m along ∂M_2^m to obtain $N_{1,2}^m$ s.t. $\partial N_{1,2}^m = \partial M_1^m$ $\mathbf{M}(N_{1,2}) \leq \mathbf{M}(N_1^m) + \mathbf{M}(N_2^m) \leq d_{SWIF}(M_1, M_2) + \mathbf{FillVol}(\partial M_2^m) + \epsilon.$

Intrinsic Flat and Gromov-Hausdorff Convergence

Christina Sormani

CUNY GC and Lehman College

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Lectures IV: Proving Intrinsic Flat Convergence

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $Vol(M_j) \rightarrow Vol(M_\infty)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Volume Preserving Intrinsic Flat \mathcal{VF} Convergence Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $Vol(M_j) \rightarrow Vol(M_\infty)$. Defn: $M_j \xrightarrow{\mathcal{F}} M_\infty$ if $d_{\mathcal{F}}(M_j, M_\infty) = d_{SWIF}(M_j, M_\infty) \rightarrow 0$:

900

Lakzian-Sormani: Estimating *d*_{SWIF}

Lakzian - Sormani: Suppose (M_1, g_1) and (M_2, g_2) are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_i \subset M_i$. Identifying $W_1 = W_2 = W$ assume that on W we have

$$g_1 \leq (1+\varepsilon)^2 g_2$$
 and $g_2 \leq (1+\varepsilon)^2 g_1$.

Taking the extrinsic diameters,

$$\operatorname{diam}(M_i) \leq D$$

we define a hemispherical width,

$$\begin{array}{c}
\omega_{x}(o_{x}) \\
\omega_{x}(o_{x}) \\
\omega_{x}(o_{x}) \\
\varepsilon_{x}(o_{x}) \\
\varepsilon_{x}(o_{x})$$

Lakzian-Sormani: Estimating *d*_{SWIF}

Lakzian - Sormani: Suppose (M_1, g_1) and (M_2, g_2) are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_i \subset M_i$. Identifying $W_1 = W_2 = W$ assume that on W we have

$$g_1 \leq (1+\varepsilon)^2 g_2$$
 and $g_2 \leq (1+\varepsilon)^2 g_1$.

Taking the extrinsic diameters,

$$\operatorname{diam}(M_i) \leq D$$

we define a hemispherical width,

and we defi

Then tak

Taking the difference in distances with respect to the outside manifolds, we set

$$\begin{split} & \bigwedge = \sup_{x,y \in W} |d_{M_1}(x,y) - d_{M_2}(x,y)| \le 2D, \\ & \bigwedge_{h} = \max\{\sqrt{2\lambda D}, D\sqrt{\varepsilon^2 + 2\varepsilon}\}. \end{split}$$

$$how the height, \\ & \widehat{h} = \max\{\sqrt{2\lambda D}, D\sqrt{\varepsilon^2 + 2\varepsilon}\}. \\ & \bigwedge_{a \in P \in d} \mathbb{H} \ \bigcup_{a \in D} \mathbb{H} \ \bigcup_{a \in P \in D} \mathbb{H} \ \bigcup_{a \in D} \mathbb{H}$$

M,

 ω ,

$$d_{\mathscr{F}}(M_1, M_2) \leq (2\overline{h} + a) \left(\operatorname{Vol}_m(W_1) + \operatorname{Vol}_m(W_2) + \operatorname{Vol}_{m-1}(\partial W_1) + \operatorname{Vol}_{m-1}(\partial W_2) \right) \\ + \operatorname{Vol}_m(M_1 \setminus W_1) + \operatorname{Vol}_m(M_2 \setminus W_2),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

ω,

Lakzian-Sormani: Estimating *d*_{SWIF}

Lakzian - Sorrani: Suppose (M_1, g_1) and (M_2, g_2) are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_i \subset M_i$. Identifying $W_1 = W_2 = W$ assume that on W we have

$$g_1 \leq (1+\varepsilon)^2 g_2$$
 and $g_2 \leq (1+\varepsilon)^2 g_1$.

Taking the extrinsic diameters,

$$\operatorname{diam}(M_i) \leq D$$

M

M.

wz

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

we define a hemispherical width,

$$\bigcup_{\substack{i,j \in [\sigma_j, \epsilon] \\ (j, \epsilon_j, \epsilon_j \in e^d}} \bigcup_{i=1}^{i_j} \bigcup_{j=1}^{i_j} \sum_{j=1}^{i_j} \sum_{j=1}^{i_j}$$

Taking the difference in distances with respect to the outside manifolds, we set

$$\begin{split} & \bigwedge = \sup_{x,y \in W} |d_{M_1}(x,y) - d_{M_2}(x,y)| \leq 2D, \quad \text{for } d_{M_2}(x,y)| \leq 2D, \\ & \text{and we define the height,} \\ & \overline{h} = \max\{\sqrt{2\lambda D}, D\sqrt{\varepsilon^2 + 2\varepsilon}\}. \end{split}$$
Then faking $Z = M_1 \amalg W_1 \times [o_1 k] \amalg (\bigcup_{x \in \mathcal{A} \setminus \mathcal{A} \setminus \mathcal{A}} (a_1, M_2)) \leq (2\overline{h} + a) (\operatorname{Vol}_{\mathcal{M}}(W_1) + \operatorname{Vol}_{\mathcal{M}}(W_2) + \operatorname{Vol}_{\mathcal{M}-1}(\partial W_1) + \operatorname{Vol}_{\mathcal{M}-1}(\partial W_2)) \\ & + \operatorname{Vol}_{\mathcal{M}}(M_1 \setminus W_1) + \operatorname{Vol}_{\mathcal{M}}(M_2 \setminus W_2), \end{split}$

Allen-Perales-Sormani VADB Allen-Perales-Sormani: [arXiv:2003.01172]

$$M_j \xrightarrow{\mathrm{VADB}} M_\infty \implies M_j \xrightarrow{\mathcal{VF}} M_\infty$$

Defn: Volume Above Distance Below Conv: $M_j \xrightarrow{\text{VADB}} M_\infty$ if $Vol_j(M_j) \rightarrow Vol_\infty(M_\infty)$ and $\exists D > 0$ s.t. $Diam(M_j) \leq D$ and $\exists C^1$ diffeomorphism $\psi_j : M_\infty \rightarrow M_j$ such that

 $d_j(\psi_j(p),\psi_j(q))\geq d_\infty(p,q) \; orall p,q\in M_\infty.$

Allen-Perales-Sormani VADB Allen-Perales-Sormani: [arXiv:2003.01172]

$$M_j \xrightarrow{\mathrm{VADB}} M_\infty \implies M_j \xrightarrow{\mathcal{VF}} M_\infty$$

Defn: Volume Above Distance Below Conv: $M_j \xrightarrow{\text{VADB}} M_\infty$ if $Vol_j(M_j) \rightarrow Vol_\infty(M_\infty)$ and $\exists D > 0$ s.t. $Diam(M_j) \leq D$ and $\exists C^1$ diffeomorphism $\psi_j : M_\infty \rightarrow M_j$ such that

 $d_j(\psi_j(p),\psi_j(q))\geq d_\infty(p,q)\; orall p,q\in M_\infty.$

An earlier theorem that inspired us:

Huang-Lee -Sormani: Given (M, d_0) Riemannian without boundary and fix $\lambda > 0$, suppose that d_j are length metrics on M such that

$$\lambda \ge \frac{d_j(p,q)}{d_0(p,q)} \ge \frac{1}{\lambda}$$

Then there exists a subsequence, also denoted d_j , and a length metric d_{∞} such that d_j converges uniformly to d_{∞} :

 $\varepsilon_j = \sup \{ |d_j(p,q) - d_\infty(p,q)| : p,q \in X \} \to 0.$

and M_j converges in the intrinsic flat and Gromov-Hausdorff sense to M_∞ :

$$M_j \xrightarrow{\mathcal{F}} M_\infty \text{ and } M_j \xrightarrow{GH} M_\infty$$

where $M_j = (M, d_j)$ and $M_{\infty} = (M, d_{\infty})$.

Allen-Perales-Sormani VADB Constructing Z

A (len-Perales-Sorman Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $Diam(M_j) \le D$, $Vol_j(M_j) \le V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

(120)
$$d_j(x,y) \ge d_0(F_j(x),F_j(y)) \quad \forall x,y \in M_j.$$

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(121)
$$d_j(x,y) \le d_0(F_j(x),F_j(y)) + 2\delta_j \qquad \forall x,y \in W_j$$

with

(122) $\operatorname{Vol}_j(M_j \setminus W_j) \le V_j$

and

(123)
$$h_j \ge \sqrt{2\delta_j D + \delta_j^2}$$

then

$$(124) d_{\mathcal{F}}(M_0, M_j) \le 2V_j + h_j V.$$

Allen-Perales-Sormani VADB Constructing Z

A (len-Perales-Sorman Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \rightarrow M_0$ a C^1 diffeomorphism and distance non-increasing map:

(120)
$$d_j(x,y) \ge d_0(F_j(x),F_j(y)) \quad \forall x,y \in M_j.$$

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

(121)
$$d_j(x,y) \le d_0(F_j(x),F_j(y)) + 2\delta_j \qquad \forall x,y \in W_j$$

with

(122)
$$\operatorname{Vol}_j(M_j \setminus W_j) \le V_j$$

and

(123)
$$h_j \ge \sqrt{2\delta_j D + \delta_j^2}$$

then

$$(124) d_{\mathcal{F}}(M_0, M_j) \le 2V_j + h_j V_j$$

Allen-Perales-Sormani VADB Constructing Z

A (len-Perales-Sorman Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $Diam(M_j) \leq D$, $Vol_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

(120)
$$d_j(x,y) \ge d_0(F_j(x),F_j(y)) \quad \forall x,y \in M_j.$$

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

(121)
$$d_j(x,y) \le d_0(F_j(x),F_j(y)) + 2\delta_j \qquad \forall x,y \in W_j$$

with

(122) $\operatorname{Vol}_j(M_j \setminus W_j) \le V_j$

and

(123)
$$h_j \ge \sqrt{2\delta_j D + \delta_j^2}$$

then

$$(124) d_{\mathcal{F}}(M_0, M_j) \le 2V_j + h_j V$$

Z is M_j glued along W_j to $M_j \times [0, h]$ glued along $F_j(W_j)$ to M_0 .

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

$$(85) g_j(v,v) \ge g_0(v,v) \forall v \in T_p M$$

and

(86)
$$\operatorname{Vol}_{i}(M) \to \operatorname{Vol}_{0}(M)$$

then there exists a subsequence such that

(87)
$$\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

(85)
$$g_j(v,v) \ge g_0(v,v) \quad \forall v \in T_p M$$

and

(86)
$$\operatorname{Vol}_{i}(M) \to \operatorname{Vol}_{0}(M)$$

then there exists a subsequence such that

(87)
$$\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.$$

FIGURE 2. A tube \mathcal{T} foliated by g_0 -geodesics, γ , with $L_j(\gamma) \geq L_0(\gamma)$ has $\operatorname{Vol}_j(\mathcal{T}) \to \operatorname{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

(85)
$$g_j(v,v) \ge g_0(v,v) \quad \forall v \in T_p M$$

and

(86)
$$\operatorname{Vol}_{j}(M) \rightarrow \operatorname{Vol}_{0}(M)$$

then there exists a subsequence such that

(87)
$$\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.$$

FIGURE 2. A tube \mathcal{T} foliated by g_0 -geodesics, γ , with $L_j(\gamma) \geq L_0(\gamma)$ has $\operatorname{Vol}_j(\mathcal{T}) \to \operatorname{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to find a $W \subset M$ controlling d(p,q) for all $p,q \in W$?

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

(85)
$$g_j(v,v) \ge g_0(v,v) \quad \forall v \in T_p M$$

and

(86)
$$\operatorname{Vol}_{j}(M) \to \operatorname{Vol}_{0}(M)$$

then there exists a subsequence such that

(87)
$$\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.$$

FIGURE 2. A tube \mathcal{T} foliated by g_0 -geodesics, γ , with $L_j(\gamma) \geq L_0(\gamma)$ has $\operatorname{Vol}_j(\mathcal{T}) \to \operatorname{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to find a $W \subset M$ controlling d(p,q) for all $p,q \in W$? Egoroff's Theorem?

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

(85)
$$g_j(v,v) \ge g_0(v,v) \quad \forall v \in T_p M$$

and

(86)
$$\operatorname{Vol}_{j}(M) \to \operatorname{Vol}_{0}(M)$$

then there exists a subsequence such that

(87)
$$\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.$$

FIGURE 2. A tube \mathcal{T} foliated by g_0 -geodesics, γ , with $L_j(\gamma) \geq L_0(\gamma)$ has $\operatorname{Vol}_j(\mathcal{T}) \to \operatorname{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling d(p,q) for all $p,q \in W$? Egoroff's Theorem? But Egoroff's Theorem only gives a set $S \in M \times M$ controlling d(p,q) uniformly $\forall (p,q) \in S$...

590

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.

Proposition $\langle \cdot \cdot \cdot \rangle$ Under the hypotheses of Theorem [4.1] for every $\varepsilon > 0$ there exists a $dvol_{g_0} \times dvol_{g_0}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

(185)
$$\sup\{|d_j(p,q) - d_0(p,q)| : (p,q) \in S_{\varepsilon}\} = \delta_{\varepsilon,j} \to 0$$

(186)
$$\operatorname{Vol}_{0\times 0}(S_{\varepsilon}) > (1-\varepsilon) \operatorname{Vol}_{0\times 0}(M \times M)$$

and

(187)
$$(p, q) \in S_{\varepsilon} \iff (q, p) \in S_{\varepsilon}$$

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.

Proposition $\langle \cdot \cdot \cdot \rangle$ Under the hypotheses of Theorem [4.1] for every $\varepsilon > 0$ there exists a $dvol_{g_0} \times dvol_{g_0}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

(185)
$$\sup\{|d_j(p,q) - d_0(p,q)| : (p,q) \in S_{\varepsilon}\} = \delta_{\varepsilon,j} \to 0$$

(186)
$$\operatorname{Vol}_{0\times 0}(S_{\varepsilon}) > (1 - \varepsilon) \operatorname{Vol}_{0\times 0}(M \times M).$$

and

$$S_{p,\varepsilon} = \{q \in M : (p,q) \in S_{\varepsilon}\},\$$

are $dvol_{q_0}$ measurable and satisfy

$$(1 - \varepsilon) \operatorname{Vol}_0(M) < \int_{p \in M} \frac{\operatorname{Vol}_0(S_{p,\varepsilon})}{\operatorname{Vol}_0(M)} dvol_{g_0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Allen-Perales-Sormani Ptwise to Uniform on $W \subset M$

Now we apply Egoroff's theorem to obtain uniform convergence on a set of almost full measure.

Proposition $\langle \cdot \cdot \cdot \rangle$ Under the hypotheses of Theorem [4.1] for every $\varepsilon > 0$ there exists a $dvol_{g_0} \times dvol_{g_0}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

(185)
$$\sup\{|d_j(p,q) - d_0(p,q)| : (p,q) \in S_{\varepsilon}\} = \delta_{\varepsilon,j} \to 0$$

(186)
$$\operatorname{Vol}_{0\times 0}(S_{\varepsilon}) > (1 - \varepsilon) \operatorname{Vol}_{0\times 0}(M \times M).$$

and

$$S_{p,\varepsilon} = \{q \in M : (p,q) \in S_{\varepsilon}\},\$$

are $dvol_{q_0}$ measurable and satisfy

$$(1 - \varepsilon) \operatorname{Vol}_0(M) < \int_{p \in M} \frac{\operatorname{Vol}_0(S_{p,\varepsilon})}{\operatorname{Vol}_0(M)} dvol_{g_0}.$$

Lemma (1). For $W_{\kappa\varepsilon} = \xi_{P} : V_{o} I_{o} (S_{P}, \varepsilon) > (I - K\varepsilon) V_{o} I_{o} (H)$

$$\operatorname{Vol}_0(W_{\kappa\varepsilon}) > \frac{\kappa - 1}{\kappa} \operatorname{Vol}_0(M).$$

and $|d_j(p,q) - d_0(p,q)| < \delta_{\varepsilon,j}$ $\forall p,q \in W_{K,\varepsilon}$

3

Allen-Perales-Sormani VADB to \mathcal{VF} is Proven Lemma $\mathcal{F}_{or} W_{\kappa\varepsilon} = \xi_{\mathcal{P}} : \bigvee_{o} \bigcup_{o} (S_{\mathcal{P},\varepsilon}) > (I - K\varepsilon) \bigvee_{o} \bigcup_{o} (H) \}$ $\operatorname{Vol}_{0}(W_{\kappa\varepsilon}) > \frac{\kappa - 1}{\kappa} \operatorname{Vol}_{0}(M).$

and $|d_j(p,q) - d_0(p,q)| < \delta_{\varepsilon,j} \quad \forall p,q \in W_{K,\varepsilon}$ combined with our estimate on SWIF:

A (len-Perales-Sorman, Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

(120)
$$d_j(x,y) \ge d_0(F_j(x),F_j(y)) \quad \forall x,y \in M_j.$$

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

(121)
$$d_j(x,y) \le d_0(F_j(x),F_j(y)) + 2\delta_j \qquad \forall x,y \in W_j$$

with

(122)
$$\operatorname{Vol}_{j}(M_{j} \setminus W_{j}) \leq V$$

and

(123)
$$h_j \ge \sqrt{2\delta_j D + \delta_j}$$

then

(124)
$$d_F(M_0, M_j) \le 2V_j + h_j V_j$$

completes the proof of $M_j \xrightarrow{\text{VADB}} M_\infty \implies M_j \xrightarrow{\mathcal{VF}} M_\infty$. \Box

Recall Flat limits of oriented submanifolds are integral currents:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{\infty} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in *Z*. **Key New Idea:** generalize oriented Riemannian Manifolds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X.

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{\mathcal{A}_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X. Furthermore: $\mathbf{M}(M) = \mathbf{M}(T)$ and $\partial M = (set(\partial T), d, \partial T)$.

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable. **Defn:** an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t. $T(f, \pi_1, \dots, \pi_m) = \sum_{i=1}^{\infty} a_i \int (f \circ \varphi_i) d(\pi_1 \circ \varphi_i) \wedge \dots \wedge d(\pi_m \circ \varphi_i)$

$$T(f,\pi_1,...,\pi_m) = \sum_{i=1}^{n} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqcup \operatorname{set} T)$ and $\operatorname{set}(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}.$

Key Idea: Integral currents generalize oriented submanifolds in Z. Key New Idea: generalize oriented Riemannian Manifolds. Sormani-Wenger Defn: An integral current space M = (X, d, T)is a metric space (X, d) and integral current T s.t. set(T) = X. Furthermore: $\mathbf{M}(M) = \mathbf{M}(T)$ and $\partial M = (set(\partial T), d, \partial T)$. Thus X is entbly \mathcal{H}^m rectifiable: it has entbly many pairwise disjoint Lip charts $\varphi_i : A_i \to X$ s.t. $\mathcal{H}^m(X \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0$.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p, q) = \inf\{L_g(C): C: [0, 1] \rightarrow M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d, \partial T)$.

- ロ ト - 4 回 ト - 4 □

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T|| (B(z,r))/r^m > 0 \}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d, \partial T)$.

- ロ ト - 4 回 ト - 4 □

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d, \partial T)$. A compact oriented manifold (M^m, g) is an integral current space $(M, d_M, [[M]])$ with weight $\theta = 1$ and $\mathbf{M}(U) = \operatorname{Vol}(U) = \mathcal{H}^m(U)$.

Oriented Riemannian Mnflds and Integral Current Spaces An oriented Riemannian mnfld (M^m, g) is a metric space (M, d_M) with a smooth collection of charts $d_M(p,q) = \inf\{L_g(C): C: [0,1] \to M, C(0) = p, C(1) = q\}$ where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds$ $Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure. An integral current space M = (X, d, T) is a metric space (X, d)and integral current T s.t. set(T) = X where $set(T) = \{z \in Z \mid \liminf_{r \to 0} ||T|| (B(z, r))/r^m > 0\}$ So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta: M \to \mathbb{Z}$ The mass $\mathbf{M}(U) = ||T||(U)$ has $||T|| = \theta \lambda \mathcal{H}^m$. It might not be connected and might not have any geodesics. Its boundary is $\partial M = (set(\partial T), d, \partial T)$. A compact oriented manifold (M^m, g) is an integral current space $(M, d_M, [[M]])$ with weight $\theta = 1$ and $\mathbf{M}(U) = \operatorname{Vol}(U) = \mathcal{H}^m(U)$. Its boundary $(\partial M, d_M, [[\partial M]])$ has the restricted distance d_M .

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is: $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \rightarrow Z \right\}$ where $\varphi_{\#} T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$,

Sormani-Wenger: Intrinsic Flat Distance between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is: $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} \mathcal{T}_1, \varphi_{2\#} \mathcal{T}_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where $\varphi_{\#}T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$. Here: $d_F^Z(\varphi_{1\#}T_1, \varphi_{2\#}T_2)$ is the Federer-Fleming Flat dist $= \inf \left\{ \mathsf{M}_{area}(\mathsf{A}) + \mathsf{M}_{area}(\mathsf{B}) : \mathsf{A} + \partial \mathsf{B} = \varphi_{1\#} \mathsf{T}_1 - \varphi_{2\#} \mathsf{T}_2 \right\}$ M_{l} φ_{I} 2 a metric space with oriented Eweighted charts well. also an integral current space 2

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose

 $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If
$$M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ s.t. $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ s.t. $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus by Ambrosio-Kirchheim Theory:

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ s.t. $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus by Ambrosio-Kirchheim Theory:

$$M_j \xrightarrow{\text{SWIF}} M_\infty \implies \partial M_j \xrightarrow{\text{SWIF}} \partial M_\infty$$

Defn: For any pair of integral current spaces,

 $d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z \left(\varphi_{1\#} T_1, \varphi_{2\#} T_2 \right) \mid \varphi_i : M_i^m \to Z \right\}$ where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = set(A) \cup set(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (X_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ s.t. $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

$$M_{j} \xrightarrow{\text{SWIF}} M_{\infty} \implies \partial M_{j} \xrightarrow{\text{SWIF}} \partial M_{\infty}$$
$$M_{j} \xrightarrow{\text{SWIF}} M_{\infty} \implies \lim \inf_{j \to \infty} \mathbf{M}(M_{j}) \ge \mathbf{M}(M_{\infty})$$

Thm [Sor-ArzAsc]: For any $p \in M_{\infty}$ there exists $p_j \in M_j$ s.t. $d_Z(\varphi_j(p_j), \varphi_{\infty}(p)) \to 0.$

Arzela-Ascoli Theorem

Theorem [Sor \neg Are Asc] Suppose $M_i = (X_i, d_i, T_i)$ are integral current spaces for $i \in \{1, 2, ..., \infty\}$ and $M_i \xrightarrow{\mathcal{F}} M_{\infty}$ and $F_i : X_i \to W$ are Lipschitz maps into a compact metric space W with

(188) $\operatorname{Lip}(F_i) \leq K,$

then a subsequence converges to a Lipschitz map $F_{\infty}: X_{\infty} \to W$ with

(189)
$$\operatorname{Lip}(F_{\infty}) \leq K.$$

More specifically, there exists isometric embeddings of the subsequence, $\varphi_i : X_i \to Z$, such that $d_F^Z(\varphi_{i\#}T_i, \varphi_{\infty\#}T_\infty) \to 0$ and for any sequence $p_i \in X_i$ converging to $p \in X_\infty$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(190)
$$d_Z(\varphi_i(p_i), \varphi_\infty(p)) \to 0,$$

one has converging images,

(191)
$$d_W(F_i(p_i), F_\infty(p)) \to 0.$$

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$.

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$. **Thm:** If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$. **Thm:** If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then $\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0$.

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that $d_F^Z(\varphi_{j\#}T_j, \varphi_{0\#}T_0) \to 0$ and $\varphi_{j\#}T_j(\omega) \to \varphi_{0\#}T_0(\omega)$. **Thm:** If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then $\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0$. **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]]) \xrightarrow{\text{SWIF}} (B(p_0, r), d_M, [[B(p_0, r)]])$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{l}},r),d_{M},[[B(p_{i_{l}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r),d_{M},[[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{\ell}},r), d_{M}, [[B(p_{i_{\ell}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r), d_{M}, [[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$ **Coro:** $\partial B(p_i, r) \rightarrow \partial B(p_0, r)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{\ell}},r), d_{M}, [[B(p_{i_{\ell}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r), d_{M}, [[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$ **Coro:** $\partial B(p_i, r) \rightarrow \partial B(p_0, r)$. **Coro:** FillVol($\partial B(p_i, r)$) \rightarrow FillVol($\partial B(p_0, r)$).

(日) (日) (日) (日) (日) (日) (日) (日)

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{\ell}},r), d_{M}, [[B(p_{i_{\ell}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r), d_{M}, [[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$ **Coro:** $\partial B(p_i, r) \rightarrow \partial B(p_0, r)$. **Coro:** FillVol($\partial B(p_i, r)$) \rightarrow FillVol($\partial B(p_0, r)$). **Coro:** $\text{Diam}(M_0) < \lim \inf_{i \to \infty} \text{Diam}(M_i)$.

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{\ell}},r), d_{M}, [[B(p_{i_{\ell}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r), d_{M}, [[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$ **Coro:** $\partial B(p_i, r) \rightarrow \partial B(p_0, r)$. **Coro:** FillVol($\partial B(p_i, r)$) \rightarrow FillVol($\partial B(p_0, r)$). **Coro:** $\text{Diam}(M_0) \leq \liminf_{i \to \infty} \text{Diam}(M_i)$. **Thm:** If $M_i^m \xrightarrow{\text{SWIF}} M_{SWIF} \neq 0^m$ then $\exists N_i \subset M_i$ such that $N_i \xrightarrow{\text{GH}} M_{SWIF}$ and $\liminf_{i \to \infty} \mathbf{M}(N_i) \geq \mathbf{M}(M_{SWIF})$.

Thm: If B(p, r) is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. r > 0. **Thm [SW]:** If $M_i = (X_i, d_i, T_i) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$ \exists complete separable Z and dist. pres. $\varphi_i : X_i \to Z$ such that $d_F^Z(\varphi_{i\#}T_i,\varphi_{0\#}T_0) \to 0 \text{ and } \varphi_{i\#}T_i(\omega) \to \varphi_{0\#}T_0(\omega).$ **Thm:** If $p_0 \in M_0$ and $M_i \xrightarrow{\text{SWIF}} M_0$, then $\exists p_i \in M_i \text{ such that } d_Z(\varphi_i(p_i), \varphi_0(p_0)) \to 0.$ **Furthermore:** For a.e. $r > 0 \exists$ subsequence j_k such that $(B(p_{i_{l}},r),d_{M},[[B(p_{i_{l}},r)]]) \xrightarrow{\text{SWIF}} (B(p_{0},r),d_{M},[[B(p_{0},r)]]).$ **Coro:** $\liminf_{i\to\infty} \mathbf{M}(B(p_i, r)) \geq \mathbf{M}(B(p_0, r)).$ **Coro:** $\partial B(p_i, r) \rightarrow \partial B(p_0, r)$. **Coro:** FillVol($\partial B(p_i, r)$) \rightarrow FillVol($\partial B(p_0, r)$). **Coro:** $\text{Diam}(M_0) \leq \liminf_{i \to \infty} \text{Diam}(M_i)$. **Thm:** If $M_i^m \xrightarrow{\text{SWIF}} M_{SWIF} \neq 0^m$ then $\exists N_i \subset M_i$ such that $N_i \xrightarrow{\text{GH}} M_{SWIF}$ and $\liminf_{i \to \infty} \mathbf{M}(N_i) \geq \mathbf{M}(M_{SWIF})$. The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, $f : Z \to \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$< au, f, s>:= -\partial\left(au arprop f^{-1}(s,\infty)
ight) + (\partial au) arprop f^{-1}(s,\infty),$$

イロト イボト イヨト イヨト 三日

where S restricted to U is $(S \sqcup U)(h, \pi_1, ...) = S(\chi_U \cdot h, \pi_1, ...)$.

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, $f : Z \to \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$< au, f, s>:= -\partial\left(au arprop f^{-1}(s,\infty)
ight) + (\partial au) arprop f^{-1}(s,\infty),$$

where S restricted to U is $(S \sqcup U)(h, \pi_1, ...) = S(\chi_U \cdot h, \pi_1, ...)$.

To prove it is an integral current, they prove its mass and the mass of $\partial < T, f, s \ge < -\partial T, f, s >$ is finite for a.e. $s \in \mathbb{R}$.

人口 医水黄 医水黄 医水黄素 化甘油

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, $f : Z \to \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$ one can define the slice of T by f at s which is an integral current

$$< au,f,s>:=-\partial\left(auce f^{-1}(s,\infty)
ight)+(\partial au)ce f^{-1}(s,\infty),$$

where S restricted to U is $(S \sqcup U)(h, \pi_1, ...) = S(\chi_U \cdot h, \pi_1, ...)$.

To prove it is an integral current, they prove its mass and the mass of $\partial < T, f, s \ge < -\partial T, f, s \ge$ is finite for a.e. $s \in \mathbb{R}$. In fact:

$$\int_{s \in \mathbb{R}} \mathsf{M}(\langle T, f, s \rangle) \, ds = \mathsf{M}(T \sqcup df) \leq Lip(f) \, \mathsf{M}(T)$$

where $(T \sqcup df)(h, \pi_1, ..., \pi_{m-1}) = T(h, f, \pi_1, ..., \pi_{m-1})$.

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$. $< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$. $< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >$ $< T_1, f, s > - < T_2, f, s > = < A, f, s > - \partial < B, f, s >$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$. $< T_1, f, s > - < T_2, f, s >=< A, f, s > + < \partial B, f, s >$ $< T_1, f, s > - < T_2, f, s >=< A, f, s > - \partial < B, f, s >$ $d_F^Z(< T_1, f, s >, < T_2, f, s >) \le \mathbf{M}(< A, f, s >) + \mathbf{M}(< B, f, s >)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$. $< T_1, f, s > - < T_2, f, s >=< A, f, s > + < \partial B, f, s >$ $< T_1, f, s > - < T_2, f, s >=< A, f, s > - \partial < B, f, s >$ $d_F^Z(< T_1, f, s >, < T_2, f, s >) \le \mathbf{M}(< A, f, s >) + \mathbf{M}(< B, f, s >)$ Since

$$\int_{s \in \mathbb{R}} \mathbf{M}(\langle A, f, s \rangle) \, ds \leq Lip(f) \, \mathbf{M}(A)$$

and

$$\int_{s \in \mathbb{R}} \mathbf{M}(\langle B, f, s \rangle) \, ds \leq Lip(f) \, \mathbf{M}(B)$$

we have,

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_1, f, s \rangle, \langle T_2, f, s \rangle) ds \leq Lip(f)(\mathbf{M}(A) + \mathbf{M}(B))$$

$$\int_{s \in \mathbb{R}} d_F^Z(< T_1, f, s >, < T_2, f, s >) \, ds \le Lip(f) d_F^Z(T_1, T_2)$$

Convergence of Slices If $d_F^Z(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

 $\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$

Convergence of Slices If $d_F^Z(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists \text{ subseq s.t. } d_F^Z(< T_j, f, s >, < T_{\infty}, f, s >) \rightarrow 0.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convergence of Slices If $d_F^Z(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} dF_{i}(< T_{j}, f, s >, < T_{\infty}, f, s >) ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \to 0$. What about slices of converging integral current spaces where $Slice((X, d, T), f, s) = (set(\langle T, f, s \rangle), d, \langle T, f, s \rangle)?$
Convergence of Slices If $d_F^Z(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \to 0$. What about slices of converging integral current spaces where $Slice((X, d, T), f, s) = (set(\langle T, f, s \rangle), d, \langle T, f, s \rangle)?$ $(X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty)$ implies $\exists Z \text{ and } \varphi_j : X_j \to Z \text{ s.t. } d_F^Z(\varphi_{j\#T_j}, \varphi_{\infty\#}T_\infty) \to 0.$

Convergence of Slices If $d_F^Z(T_i, T_\infty) \to 0$ and $f: Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \to 0$. What about slices of converging integral current spaces where $Slice((X, d, T), f, s) = (set(\langle T, f, s \rangle), d, \langle T, f, s \rangle)?$ $(X_j, d_j, T_j) \xrightarrow{SWIF} (X_\infty, d_\infty, T_\infty)$ implies $\exists Z \text{ and } \varphi_j : X_j \to Z \text{ s.t. } d_F^Z(\varphi_{j\#T_j}, \varphi_{\infty\#}T_\infty) \to 0.$ Taking $f_j = f \circ \varphi_j$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$: $Slice(M_j, f_j, s) \xrightarrow{SWIF} Slice(M_\infty, f_\infty, s_\infty).$

Convergence of Slices If $d^{Z}(T, T) \rightarrow 0$ and for $T \rightarrow \mathbb{R}$ has Li

If $d_F^Z(T_j, T_\infty) \to 0$ and $f: Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{\mathsf{F}}^{\mathsf{Z}}(\langle T_i, f, s \rangle, \langle T_{\infty}, f, s \rangle) \to 0$. What about slices of converging integral current spaces where Slice((X, d, T), f, s) = (set(< T, f, s >), d, < T, f, s >)? $(X_i, d_i, T_i) \xrightarrow{\text{SWIF}} (X_{\infty}, d_{\infty}, T_{\infty})$ implies $\exists Z \text{ and } \varphi_i : X_i \to Z \text{ s.t. } d_F^Z(\varphi_{j \# T_i}, \varphi_{\infty \#} T_\infty) \to 0.$ Taking $f_i = f \circ \varphi_i$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$: Slice(M_i, f_i, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, f_{\infty}, s_{\infty}$). **Portegies-Sormani:** (after significant work) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq Slice(M_i, ρ_{p_i}, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, \rho_{p_{\infty}}, s_{\infty}$)

Convergence of Slices If $d_F^Z(T_i, T_\infty) \to 0$ and $f: Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{\mathsf{F}}^{\mathsf{Z}}(\langle T_i, f, s \rangle, \langle T_{\infty}, f, s \rangle) \to 0$. What about slices of converging integral current spaces where Slice((X, d, T), f, s) = (set(< T, f, s >), d, < T, f, s >)? $(X_i, d_i, T_i) \xrightarrow{\text{SWIF}} (X_{\infty}, d_{\infty}, T_{\infty})$ implies $\exists Z \text{ and } \varphi_i : X_i \to Z \text{ s.t. } d_F^Z(\varphi_{j \# T_i}, \varphi_{\infty \#} T_\infty) \to 0.$ Taking $f_i = f \circ \varphi_i$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$: Slice(M_i, f_i, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, f_{\infty}, s_{\infty}$). **Portegies-Sormani:** (after significant work) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq Slice(M_i, ρ_{p_i}, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, \rho_{p_{\infty}}, s_{\infty}$) So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$.

Convergence of Slices If $d_F^Z(T_i, T_\infty) \to 0$ and $f: Z \to \mathbb{R}$ has $Lip(f) \le 1$ then

$$\int_{s\in\mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d_{\mathsf{F}}^{\mathsf{Z}}(\langle T_i, f, s \rangle, \langle T_{\infty}, f, s \rangle) \to 0$. What about slices of converging integral current spaces where Slice((X, d, T), f, s) = (set(< T, f, s >), d, < T, f, s >)? $(X_i, d_i, T_i) \xrightarrow{\text{SWIF}} (X_{\infty}, d_{\infty}, T_{\infty})$ implies $\exists Z \text{ and } \varphi_i : X_i \to Z \text{ s.t. } d_F^Z(\varphi_{j \# T_i}, \varphi_{\infty \#} T_\infty) \to 0.$ Taking $f_i = f \circ \varphi_i$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$: Slice(M_i, f_i, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, f_{\infty}, s_{\infty}$). **Portegies-Sormani:** (after significant work) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq Slice(M_i, ρ_{p_i}, s) $\xrightarrow{\text{SWIF}}$ Slice($M_{\infty}, \rho_{p_{\infty}}, s_{\infty}$) So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. [PS] also define a sliced filling volume and estimate it.

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_j \in M_j$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty})$. So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$.

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_j \in M_j$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty})$. So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{j\to\infty} M(B(p_j, s)) \ge M(B(p_{\infty}, s))$ and $\liminf_{j\to\infty} M(\partial B(p_j, s)) \ge M(\partial B(p_{\infty}, s))$.

(日) (日) (日) (日) (日) (日) (日) (日)

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_j \in M_j$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty})$. So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{j\to\infty} M(B(p_j, s)) \ge M(B(p_{\infty}, s))$ and $\liminf_{j\to\infty} M(\partial B(p_j, s)) \ge M(\partial B(p_{\infty}, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$: $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j\to\infty} \mathbf{M}(M_j) = \mathbf{M}(M_\infty)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_j \in M_j$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty})$. So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So lim inf_{j \to \infty} $M(B(p_j, s)) \ge M(B(p_{\infty}, s))$ and lim inf_{j \to \infty} $M(\partial B(p_j, s)) \ge M(\partial B(p_{\infty}, s))$. **Volume Preserving Intrinsic Flat Convergence** $M_j \xrightarrow{\mathcal{VF}} M_{\infty}$: $M_j \xrightarrow{\text{SWIF}} M_{\infty}$ and $\lim_{j \to \infty} M(M_j) = M(M_{\infty})$.

(日) (日) (日) (日) (日) (日) (日) (日)

This implies $\mathbf{M}(M_{\infty}) \geq \liminf_{j \to \infty} \mathbf{M}(M_j)$

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_{\infty},s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{\mathcal{VF}} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) \geq \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \liminf_{i \to \infty} \mathbf{M}(B_i) + \liminf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SW1F}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_\infty,s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{VF} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) \geq \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty})$

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SW1F}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_\infty,s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{VF} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) > \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty}) = \mathbf{M}(M_{\infty})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_\infty,s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{VF} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) \geq \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty}) = \mathbf{M}(M_{\infty})$ So all are equality

(日) (日) (日) (日) (日) (日) (日) (日)

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_{\infty},s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{VF} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) \geq \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty}) = \mathbf{M}(M_{\infty})$ So all are equality and so $\lim_{i\to\infty} M(B(p_i, r)) = M(B(p_{\infty}, r))$.

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_\infty,s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{\mathcal{VF}} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) > \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty}) = \mathbf{M}(M_{\infty})$ So all are equality and so $\lim_{i\to\infty} M(B(p_i, r)) = M(B(p_{\infty}, r))$. **Portegies a la Fukaya:** control eigenvalues of the spaces: $\limsup_{i\to\infty}\lambda_k(M_i)\to\lambda_k(M_\infty).$

Portegies-Sormani: (from last slide) $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ and $p_i \in M_i$ converges to $p_{\infty} \in M_{\infty}$ then a.e. $s \in \mathbb{R}$: a subseq $Slice(M_i, \rho_{p_i}, s) \xrightarrow{\text{SWIF}} Slice(M_{\infty}, \rho_{p_{\infty}}, s_{\infty}).$ So $B(p_i, s) \xrightarrow{\text{SWIF}} B(p_{\infty}, s)$ and $\partial B(p_i, s) \xrightarrow{\text{SWIF}} \partial B(p_{\infty}, s)$. So $\liminf_{i\to\infty} \mathbf{M}(B(p_i,s)) \geq \mathbf{M}(B(p_{\infty},s))$ and $\liminf_{i\to\infty} \mathbf{M}(\partial B(p_i,s)) \geq \mathbf{M}(\partial B(p_\infty,s)).$ Volume Preserving Intrinsic Flat Convergence $M_i \xrightarrow{\mathcal{VF}} M_{\infty}$: $M_i \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{i \to \infty} \mathbf{M}(M_i) = \mathbf{M}(M_\infty)$. This implies $\mathbf{M}(M_{\infty}) > \liminf_{i \to \infty} \mathbf{M}(M_i)$ $> \lim \inf_{i \to \infty} \mathbf{M}(B_i) + \lim \inf_{i \to \infty} \mathbf{M}(M_i \setminus B_i)$ $> \mathbf{M}(B_{\infty}) + \mathbf{M}(M_{\infty} \setminus B_{\infty}) = \mathbf{M}(M_{\infty})$ So all are equality and so $\lim_{i\to\infty} M(B(p_i, r)) = M(B(p_{\infty}, r))$. **Portegies a la Fukaya:** control eigenvalues of the spaces: $\limsup_{i\to\infty}\lambda_k(M_i)\to\lambda_k(M_\infty).$ Jauregui-Lee prove areas of certain surfaces converge by studying the integrals of the masses of slices. うつん 川田 マイドマイドマイ 雪マ ろうろ

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$

- ◆ □ ▶ → @ ▶ ★ 差 ▶ → 差 → のへぐ

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: $\liminf_{i\to\infty} Vol(M_i) \ge \mathbf{M}(M_\infty)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge M(M_\infty)$. and by [SW]: If $M_\infty \ne 0$ then it is m-rectifiable.

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge \mathbf{M}(M_\infty)$. and by [SW]: lf $M_\infty \ne 0$ then it is m-rectifiable.

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: lim inf_{j \to \infty} $Vol(M_j) \ge \mathbf{M}(M_\infty)$. and by [SW]: If $M_\infty \ne 0$ then it is m-rectifiable.

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_{\infty}$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge M(M_{\infty})$. and by [SW]: If $M_{\infty} \ne 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : closed min surfaces \Sigma \subset M_j^3\}$ **Then** M_{∞} has generalized "Scalar ≥ 0 "

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected?

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics?

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar > 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_\infty$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar > 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

ション・「山・山・山・山・山・山・

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_\infty$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear.... Given $p, q \in M_{\infty}$, $\exists p_i, q_i \in M_i$ converging to p, q.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Taking x_j to be a midpoint between p_j and q_j ,

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ by [Wenger]: subseq $M_i \xrightarrow{\text{SWIF}} M_{\infty}$ possibly 0. and by [SW]: $\liminf_{i\to\infty} \operatorname{Vol}(M_i) \geq \mathbf{M}(M_{\infty})$. and by [SW]: If $M_{\infty} \neq 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar > 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints,

but for SWIF limits midpoints might disappear....

Given $p, q \in M_{\infty}$, $\exists p_j, q_j \in M_j$ converging to p, q. Taking x_j to be a midpoint between p_j and q_j , can we show **FillVol** $(B(x_j, r)) \ge C_{V,D,A}r^3$?

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_{\infty}$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge M(M_{\infty})$. and by [SW]: If $M_{\infty} \ne 0$ then it is m-rectifiable. **Conjecture:** If in addition we have $Scalar \ge 0$ and MinA:

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_∞ has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_j \xrightarrow{V,F} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones. How can we show M_∞ is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear.... Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q. Taking x_j to be a midpoint between p_j and q_j , can we show **FillVol** $(B(x_j, r)) \ge C_{V,D,A}r^3$? OPEN. We must use x_i a midpoint because other points can disappear.

・ ロ ト ・ 国 ト ・ 国 ト ・ 国 ト ・ 回 ・ つ へ ()

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge M(M_\infty)$. and by [SW]: If $M_\infty \ne 0$ then it is m-rectifiable.

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_{∞} has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear.... Given $p, q \in M_{\infty}$, $\exists p_i, q_i \in M_i$ converging to p, q. Taking x_i to be a midpoint between p_i and q_i , can we show **FillVol** $(B(x_i, r)) \ge C_{V,D,A}r^3$? OPEN. We must use x_i a midpoint because other points can disappear. Perhaps use sliced filling volumes with $f_j(\cdot) = d_j(\cdot, p_j)$?

IAS Emerging Topic Conjecture [Gromov-S] **Suppose** M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ by [Wenger]: subseq $M_j \xrightarrow{SWIF} M_\infty$ possibly 0. and by [SW]: lim $inf_{j\to\infty} Vol(M_j) \ge \mathbf{M}(M_\infty)$. and by [SW]: lf $M_\infty \ne 0$ then it is m-rectifiable.

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_{∞} has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where M_{∞} is a connected length space with Euclidean tangent cones. How can we show M_{∞} is connected? Does it contain geodesics? For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear.... Given $p, q \in M_{\infty}$, $\exists p_i, q_i \in M_i$ converging to p, q. Taking x_i to be a midpoint between p_i and q_i , can we show **FillVol** $(B(x_i, r)) \ge C_{V,D,A}r^3$? OPEN. We must use x_i a midpoint because other points can disappear. Perhaps use sliced filling volumes with $f_i(\cdot) = d_i(\cdot, p_i)$? OPEN

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ So a subsequence $M_j \xrightarrow{SWIF} M_\infty$. **Conjecture:** If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_∞ has generalized "Scalar ≥ 0 " **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where

 M_∞ is a connected length space with Euclidean tangent cones.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ So a subsequence $M_j \xrightarrow{SWIF} M_\infty$. **Conjecture:** If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_∞ has generalized "Scalar ≥ 0 " **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_\infty$ where

 M_∞ is a connected length space with Euclidean tangent cones.
Suppose M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ So a subsequence $M_j \xrightarrow{SWIF} M_{\infty}$. **Conjecture:** If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_{∞} has generalized "Scalar ≥ 0 " **Furthermore:** we believe that we have $M_j \xrightarrow{\mathcal{VF}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean?

Suppose M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ So a subsequence $M_i \xrightarrow{\text{SWIF}} M_{\infty}$. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_{\rho}M$, which is a normed vector space:

 $(B(p,r_i), d/r_i, [[B(p,r_i)]]) \xrightarrow{\text{SWIF}} B(0,1) \subset T_p M.$

(日)((1))

Suppose M_i^3 have $Vol(M_i^3) \leq V$ and $Diam(M_i^3) \leq D$ So a subsequence $M_i \xrightarrow{\text{SWIF}} M_{\infty}$. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$ where $MinA_i = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_i^3\}$ **Then** M_{∞} has generalized "Scalar \geq 0" **Furthermore:** we believe that we have $M_i \xrightarrow{\mathcal{VF}} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, T_pM , which is a normed vector space:

 $(B(p,r_i),d/r_i,[[B(p,r_i)]]) \xrightarrow{\mathrm{SWIF}} B(0,1) \subset T_pM.$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.

(日)((1))

Suppose M_j^3 have $Vol(M_j^3) \leq V$ and $Diam(M_j^3) \leq D$ So a subsequence $M_j \xrightarrow{\text{SWIF}} M_\infty$. **Conjecture:** If in addition we have $Scalar_j \geq 0$ and $MinA_j \geq A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_∞ has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{VF}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, T_pM , which is a normed vector space:

 $(B(p, r_i), d/r_i, [[B(p, r_i)]]) \xrightarrow{\text{SWIF}} B(0, 1) \subset T_p M.$ So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this. Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $||T_{\infty}|| = 1 \cdot \theta \cdot \mathbb{H}^3$.

Suppose M_j^3 have $Vol(M_j^3) \le V$ and $Diam(M_j^3) \le D$ So a subsequence $M_j \xrightarrow{SWIF} M_{\infty}$. **Conjecture:** If in addition we have $Scalar_i \ge 0$ and $MinA_i \ge A$

where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_∞ has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{VF}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, T_pM , which is a normed vector space:

 $(B(p,r_i), d/r_i, [[B(p,r_i)]]) \xrightarrow{\text{SWIF}} B(0,1) \subset T_p M.$ So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this. Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $||T_{\infty}|| = 1 \cdot \theta \cdot \mathbb{H}^3$. **Conjecture:** the weight $\theta = 1$.

Suppose M_j^3 have $\operatorname{Vol}(M_j^3) \leq V$ and $\operatorname{Diam}(M_j^3) \leq D$ So a subsequence $M_j \xrightarrow{\operatorname{SWIF}} M_\infty$.

Conjecture: If in addition we have $Scalar_j \ge 0$ and $MinA_j \ge A$ where $MinA_j = min\{Area(\Sigma) : \text{ closed min surfaces } \Sigma \subset M_j^3\}$ **Then** M_{∞} has generalized "Scalar ≥ 0 "

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{VF}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean? By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, T_pM , which is a normed vector space:

 $(B(p, r_i), d/r_i, [[B(p, r_i)]]) \xrightarrow{\text{SWIF}} B(0, 1) \subset T_p M.$ So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this. Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $||T_{\infty}|| = 1 \cdot \theta \cdot \mathbb{H}^3$. **Conjecture:** the weight $\theta = 1$. So $||T_{\infty}|| = \mathbb{H}^3$. Open: Prove $||T_{\infty}|| = \mathbb{H}^3$. (Ricci case by Colding "Volumes....).