Intrinsic Flat and Gromov-Hausdorff Convergence

Christina Sormani

CUNY GC and Lehman College

Lectures III-IV: Proving Intrinsic Flat Convergence
Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!

- Reviewed C^k, C^0, Lip, and GH Convergence,
- Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}),
- Volume Preserving Intrinsic Flat Convergence (\mathcal{VF})
- Allen-Perales-Sormani (VADB) Convergence
Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C^k, C^0, Lip, and GH Convergence,
Sormani-Wenger Intrinsic Flat Convergence (\mathcal{F}) or (\mathcal{F}),
Volume Preserving Intrinsic Flat Convergence (\mathcal{VF})
Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE!
Consider: Three Dimensional Manifolds M_j^3 with $\text{Scal} \geq H$
and their Limit Spaces M_∞
Which Geometric Properties of M_j^3 with $\text{Scal} \geq H$
persist on their Limit Spaces M_∞?
Which Rigidity Theorems for M^3 with $\text{Scal} \geq H$
have Geometric Stability?
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]
Intrinsic Flat and Gromov-Hausdorff Convergence

Lecture 1: Geometric Notions of Convergence DONE!
Reviewed C^k, C^0, Lip, and GH Convergence,
Sormani-Wenger Intrinsic Flat Convergence (SWIF) or (\mathcal{F}),
Volume Preserving Intrinsic Flat Convergence (\mathcal{VF})
Allen-Perales-Sormani (VADB) Convergence

Lecture 2: Open Problems on Scalar Curvature DONE!
Consider: Three Dimensional Manifolds M^3_j with $\text{Scal} \geq H$
and their Limit Spaces M^∞
Which Geometric Properties of M^3_j with $\text{Scal} \geq H$
persist on their Limit Spaces M^∞?
Which Rigidity Theorems for M^3 with $\text{Scal} \geq H$
have Geometric Stability?
[Conjectures on Conv and Scalar (2021) arXiv: 2103.10093]

Lectures 3&4: Techniques to Apply to Prove Convergence
See https://sites.google.com/site/intrinsicflatconvergence/
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{VF} M_\infty$ if $d(F(M_j, M_\infty)) \rightarrow 0$:

Defn: $M_j \xrightarrow{F} M_\infty$ if $d(SWIF)(M_j, M_\infty) \rightarrow 0$:
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $\text{Vol}(M_j) \rightarrow \text{Vol}(M_\infty)$.
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $\text{Vol}(M_j) \to \text{Vol}(M_\infty)$.

Defn: $M_j \xrightarrow{\mathcal{F}} M_\infty$ if $d_{\mathcal{F}}(M_j, M_\infty) = d_{SWIF}(M_j, M_\infty) \to 0$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_{\mathcal{F}}^Z (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_{\mathcal{F}}^Z (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \text{M}_{\text{area}}(A) + \text{M}_{\text{vol}}(B) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \right\}$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

\[|N_1 - N_2|_b = \inf \left\{ M(\textcolor{green}{A}) + M(\textcolor{yellow}{B}) \right\} \]

where \textcolor{green}{A} and \textcolor{yellow}{B} are chains

such that \textcolor{green}{A} + \partial \textcolor{yellow}{B} = N_1 - N_2.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$\varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^*\omega$$

where ω is an m-form.

$$\varphi\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) =$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$\varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^*\omega$$

where ω is an m-form.

$$\varphi\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi#[[M^m]]$:

$$\varphi#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^*\omega$$

where ω is an m-form.

$$\varphi#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi)$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ \mathbf{M}(A) + \mathbf{M}(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$\varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^*\omega$$

where ω is an m-form.

$$\varphi\#[[M]](f d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$\varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega \text{ where } \omega \text{ is an } m\text{-form.}$$

$$\varphi\#[[M]](f \ d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \ d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$\varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^* \omega$$

where ω is an m-form.

$$\varphi\#[[M]](f d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:

$$\partial[[N^m]](\omega) = [[N^m]](d\omega) = \int_N d\omega = \int_{\partial N} \omega = [[\partial N^m]](\omega)$$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm between submanifolds N_i in \mathbb{R}^N:

$$ |N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

where A and B are chains such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are currents acting on differential forms, ω, in \mathbb{R}^N. They view a submanifold $\varphi(M^m)$ as an m-current $\varphi\#[[M^m]]$:

$$ \varphi\#[[M^m]](\omega) = \int_{\varphi(M^m)} \omega = \int_{M^m} \varphi^*\omega \text{ where } \omega \text{ is an } m\text{-form.}$$

$$ \varphi\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T they define $\partial T : \partial T(\omega) = T(d\omega)$ so that:

$$ \partial[[N^m]](\omega) = [[N^m]](d\omega) = \int_N d\omega = \int_{\partial N} \omega = [[\partial N^m]](\omega)$$

where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

such that $A + \partial B = N_1 - N_2$. “

Federer-Fleming (1959): Use Whitney's definition but now A and B are integral currents acting on differential forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable.

where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\phi_i: A_i \to \phi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \phi_i^* \omega$.

Defn: The mass $M(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| H^m(\phi_i(A_i))$.

Compactness Thm [FF]: If integral currents T_j have $\text{spt}(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_∞ s.t. $||T_{j_k} - T_\infty|| \to 0$.

Furthermore: $\partial T_{j_k} \to \partial T_\infty$ and $\lim inf_{j \to \infty} M(T_j) \geq M(T_\infty)$ and $T_j(\omega) \to T_\infty(\omega)$ for any diff form ω.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

\[|N_1 - N_2| = \inf \left\{ M(A) + M(B) \right\} \]

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|\mathcal{N}_1 - \mathcal{N}_2|_b = \inf \left\{ M(\mathcal{A}) + M(\mathcal{B}) \right\}$$

such that $\mathcal{A} + \partial \mathcal{B} = \mathcal{N}_1 - \mathcal{N}_2$.

Federer-Fleming (1959): Use Whitney’s definition but now \mathcal{A} and \mathcal{B} are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, \mathcal{T}, is an integer rectifiable current whose boundary $\partial \mathcal{T}$ defined by $\partial \mathcal{T}(\omega) = \mathcal{T}(d\omega)$ is also integer rectifiable, where an integer rectifiable current, \mathcal{T}, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $\mathcal{T}(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.

Defn: The mass $M(\mathcal{T}) = \| \mathcal{T} \|(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i))$.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.

Defn: The mass $M(T) = \|T\|_{\mathbb{R}^N} = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i))$.

Compactness Thm [FF]: If integral currents T_j have $\text{spt}(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_∞ s.t. $|T_{j_k} - T_\infty|_b \to 0$.
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

\[
|N_1 - N_2|_b = \inf \left\{ M\left(\begin{array}{c} A \end{array}\right) + M\left(\begin{array}{c} B \end{array}\right) \right\}
\]

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney's definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.

Defn: The mass $M(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i))$.

Compactness Thm [FF]: If integral currents T_j have $spt(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_∞ s.t. $|T_{j_k} - T_\infty|_b \rightarrow 0$.

Furthermore: $\partial T_j \overset{\mathcal{F}}{\rightarrow} \partial T_\infty$
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \(\mathbb{R}^N \):
\[
|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}
\]
such that \(A + \partial B = N_1 - N_2 \).

Federer-Fleming (1959): Use Whitney’s definition but now \(A \) and \(B \) are integral currents acting on diff forms, \(\omega \), in \(\mathbb{R}^N \).

Defn: an integral current, \(T \), is an integer rectifiable current whose boundary \(\partial T \) defined by \(\partial T(\omega) = T(d\omega) \) is also integer rectifiable. where an integer rectifiable current, \(T \), has a countable collection of pairwise disjoint biLip charts \(\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N \) and weights \(a_i \in \mathbb{Z} \) such that \(T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega \).

Defn: The mass \(M(T) = \|T\|_{\mathbb{R}^N} = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) \).

Compactness Thm [FF]: If integral currents \(T_j \) have \(\text{spt}(T_j) \subset K \) compact, and \(M(T_j) \leq V \) and \(M(\partial T_j) \leq A \) then \(\exists \) subseq \(T_{jk} \) and an integral current \(T_\infty \) s.t. \(|T_{jk} - T_\infty|_b \to 0 \).

Furthermore: \(\partial T_j \overset{\mathcal{F}}{\to} \partial T_\infty \) and \(\liminf_{j \to \infty} M(T_j) \geq M(T_\infty) \).
History of the Flat Norm in Euclidean Space:

Whitney (1957): Flat norm in \mathbb{R}^N:

$$|N_1 - N_2|_b = \inf \left\{ M(A) + M(B) \right\}$$

such that $A + \partial B = N_1 - N_2$.

Federer-Fleming (1959): Use Whitney’s definition but now A and B are integral currents acting on diff forms, ω, in \mathbb{R}^N.

Defn: an integral current, T, is an integer rectifiable current whose boundary ∂T defined by $\partial T(\omega) = T(d\omega)$ is also integer rectifiable. where an integer rectifiable current, T, has a countable collection of pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{R}^N$ and weights $a_i \in \mathbb{Z}$ such that $T(\omega) = \sum_{i=1}^{\infty} a_i \int_{A_i} \varphi_i^* \omega$.

Defn: The mass $M(T) = ||T||(\mathbb{R}^N) = \sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i))$.

Compactness Thm [FF]: If integral currents T_j have $spt(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_∞ s.t. $|T_{j_k} - T_\infty|_b \to 0$.

Furthermore: $\partial T_j \overset{F}{\to} \partial T_\infty$ and $\lim \inf_{j \to \infty} M(T_j) \geq M(T_\infty)$ and $T_j(\omega) \to T_\infty(\omega)$ for any diff form ω.
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi_#[[M]](f \; d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \; d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi_# [[M]] (f d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T acting on form ω define $\partial T : \partial T(\omega) = T(d\omega)$ where

$$d(f d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$$
Currents in Metric Spaces:

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi_\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T acting on form ω define $\partial T : \partial T(\omega) = T(d\omega)$ where

$$d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m.$$

DeGiorgi (1995): For a complete metric space, Z,

Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T acting on form ω define $\partial T : \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz.
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi^\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi)^\wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T acting on form ω define ∂T:

$$\partial T(\omega) = T(d\omega)$$

where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

$$\varphi^\#[[M]](f, \pi_1, \ldots, \pi_m) =$$
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

\[
\varphi_\#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).
\]

Given a current T acting on form ω define $\partial T : \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

\[
\varphi_\#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi: M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi#[[M]](f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi).$$

Given a current T acting on form ω define $\partial T : \partial T(\omega) = T(d\omega)$ where $d(f \, d\pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge d\pi_1 \wedge \cdots \wedge d\pi_m$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, ..., \pi_m)$ s.t. $f: Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i: Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi: M^m \to Z$, define a current acting on tuples:

$$\varphi#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, ..., \pi_m) =$.
Federer-Fleming (1959): Currents in \mathbb{R}^N act on diff forms. Given a smooth $\varphi : M^m \to \mathbb{R}^N$, define a current acting on forms:

$$\varphi_#(\pi_1 \cdots \pi_m) = \int_M \varphi \circ \varphi_1 \wedge \cdots \wedge \varphi_m.$$

Given a current T acting on form ω, define $\partial T : \partial T(\omega) = T(d\omega)$
where $d(f \pi_1 \wedge \cdots \wedge d\pi_m) = df \wedge \pi_1 \wedge \cdots \wedge d\pi_m$.

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

$$\varphi_#([M])(f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \varphi_1 \wedge \cdots \wedge \varphi_m.$$

Given a current T acting on a tuple ω, define $\partial T(\omega) = T(d\omega)$
where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Currents in Metric Spaces:
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

$$\varphi \#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, \(Z \), replace diff forms \(f \, d\pi_1 \wedge \cdots \wedge d\pi_m \) with tuples \((f, \pi_1, \ldots, \pi_m)\) s.t. \(f : Z \to \mathbb{R} \) is bounded Lipschitz and \(\pi_i : Z \to \mathbb{R} \) are Lipschitz. Given a Lipschitz \(\varphi : M^m \to Z \), define a current acting on tuples:

\[
\varphi \#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

Given a current \(T \) acting on a tuple \(\omega \) define \(\partial T(\omega) = T(d\omega) \) where \(d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, ..., \pi_m) \).

Ambrosio-Kirchheim (2000): an integral current, \(T \), is an integer rectifiable current s.t. \(\partial T \) is also integer rectifiable.
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz. Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

$$\varphi^\#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^\infty a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Mass is not the weighted volume in Ambrosio-Kirchheim Theory!
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \to \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \to \mathbb{R}$ are Lipschitz.

Given a Lipschitz $\varphi : M^m \to Z$, define a current acting on tuples:

$$\varphi \# [\mathcal{M}](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.
Integral Currents in Metric Spaces:

DeGiorgi (1995): For a complete metric space, Z, replace diff forms $f \, d\pi_1 \wedge \cdots \wedge d\pi_m$ with tuples $(f, \pi_1, \ldots, \pi_m)$ s.t. $f : Z \rightarrow \mathbb{R}$ is bounded Lipschitz and $\pi_i : Z \rightarrow \mathbb{R}$ are Lipschitz.

Given a Lipschitz $\varphi : M^m \rightarrow Z$, define a current acting on tuples:

$$\varphi \#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

Given a current T acting on a tuple ω define $\partial T(\omega) = T(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. A current, T, has ctnbly many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Mass is not the weighted volume in Ambrosio-Kirchheim Theory!
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = ||T||_Z$ where $||T||_T$ is the mass measure of T, which is the smallest measure μ_T s.t.

$$|\varphi # [M](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^{m} \text{Lip}(\pi_i) \int \varphi(M) |f \circ \varphi| \mu_T$$

Thm [AK]: The mass measure $||T||_T = \lambda_\theta(H^m \text{set } T)$ where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and set $(T) = \{z \in Z \mid \lim \inf_{r \to 0} \frac{||T||_T(B(z, r))}{r^m} > 0\}$.

Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has countably many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $\mathbf{M}(T) = \|T\|(Z)$
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, \(T \), is an integer rectifiable current s.t. \(\partial T \) is also integer rectifiable.

where an integer rectifiable current, \(T \), has countably many pairwise disjoint biLip charts \(\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{Z} \) and weights \(a_i \in \mathbb{Z} \) s.t.

\[
T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

of finite weighted volume: \(\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty \).

Defn [AK]: The mass \(\mathbf{M}(T) = \| T \|_\mathbb{Z} \)

where \(\| T \| = \mu_T \) is the mass measure of \(T \).
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has countably many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = \|T\|(Z)$ where $\|T\| = \mu_T$ is the mass measure of T which is the smallest measure μ s.t.

$$|\varphi_\#[[M]](f d \pi_1 \wedge \cdots \wedge d \pi_m) | \leq \prod_{i=1}^{m} \text{Lip}(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$$
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable. where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset \mathbb{Z}$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = \|T\|(\mathbb{Z})$

where $\|T\| = \mu_T$ is the mass measure of T

which is the smallest measure μ s.t.

$$|\varphi#[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^{m} \text{Lip}(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$$

Thm [AK]: The mass measure $\|T\| = \lambda \theta (\mathcal{H}_m \mathbb{L} \text{ set } T)$
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset \mathbb{Z}$ and weights $a_i \in \mathbb{Z}$ s.t.

\[
T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| H^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = \|T\|(Z)$
where $\|T\| = \mu_T$ is the mass measure of T
which is the smallest measure μ s.t.

\[
|\varphi_#([M])(f d\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^{m} Lip(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu
\]

Thm [AK]: The mass measure $\|T\| = \lambda \theta (H_m \text{ set } T)$
where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has countably many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = \|T\|(Z)$ where $\|T\| = \mu_T$ is the mass measure of T which is the smallest measure μ s.t.

$$|\varphi \# [[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^{m} \text{Lip}(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$$

Thm [AK]: The mass measure $\|T\| = \lambda \theta (\mathcal{H}_m \text{ set } T)$ where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and
Mass of Integral Currents in Metric Spaces:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has countably many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

of finite weighted volume: $\sum_{i=1}^{\infty} |a_i| \mathcal{H}^m(\varphi_i(A_i)) < \infty$.

Defn [AK]: The mass $M(T) = \|T\|(Z)$

where $\|T\| = \mu_T$ is the mass measure of T

which is the smallest measure μ s.t.

$$|\varphi_\#[[M]](fd\pi_1 \wedge \cdots \wedge d\pi_m)| \leq \prod_{i=1}^{m} \text{Lip}(\pi_i) \int_{\varphi(M)} |f \circ \varphi| \mu$$

Thm [AK]: The mass measure $\|T\| = \lambda \theta (\mathcal{H}_m \sqsubseteq \text{set } T)$

where $\theta(p) = |a_i|$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$\text{set}(T) = \{z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}.$$
Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

They define mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (H_m \restriction \text{set} T)$ where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$\text{set}(T) = \{z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}.$$
Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

They define mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (\mathcal{H}_m \sqcap \text{set } T)$

where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$\text{set}(T) = \{z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}.$$

Note: $\text{set}(T)$ is cntbly rectifiable: $\mathcal{H}^m (\text{set}(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0$.

Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

They define mass $M(T) = \| T \|(Z)$ where $\| T \| = \lambda \theta (\mathcal{H}_m \upharpoonright \text{set } T)$

where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.$$

Note: $\text{set}(T)$ is cntbly rectifiable: $\mathcal{H}^m (\text{set}(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0.$

Compactness Thm [AK]: If integral currents T_j have

$\text{set}(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then

\exists subseq T_{j_k} and an integral current T_∞ s.t. $T_j(\omega) \to T_\infty(\omega) \forall \omega$
Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, T, is an integer rectifiable current s.t. ∂T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset \mathbb{Z}$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

They define mass $M(T) = \| T \|(\mathbb{Z})$ where $\| T \| = \lambda \theta (\mathcal{H}_m \sqcap \text{set } T)$

where $\theta(p) = a_i$ if $p \in \varphi_i(A_i)$ and $\lambda(p) \in [c_m, C_m]$ and

$$\text{set}(T) = \{ z \in \mathbb{Z} \mid \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.$$

Note: $\text{set}(T)$ is cntbly rectifiable: $\mathcal{H}^m(\text{set}(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0$.

Compactness Thm [AK]: If integral currents T_j have $\text{set}(T_j) \subset K$ compact, and $M(T_j) \leq V$ and $M(\partial T_j) \leq A$ then \exists subseq T_{j_k} and an integral current T_∞ s.t. $T_j(\omega) \to T_\infty(\omega) \forall \omega$ and $\partial T_j(\eta) \to \partial T_\infty(\eta) \forall \eta$
Ambrosio-Kirchheim Compactness Theorem:

Ambrosio-Kirchheim (2000): an integral current, \(T \), is an integer rectifiable current s.t. \(\partial T \) is also integer rectifiable. where an integer rectifiable current, \(T \), has cntbly many pairwise disjoint biLip charts \(\varphi_i : A_i \to \varphi_i(A_i) \subset Z \) and weights \(a_i \in \mathbb{Z} \) s.t.

\[
T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

They define mass \(M(T) = \| T \|(Z) \) where \(\| T \| = \lambda \theta (\mathcal{H}_m \ll \text{set } T) \)

where \(\theta(p) = a_i \) if \(p \in \varphi_i(A_i) \) and \(\lambda(p) \in [c_m, C_m] \) and

\[
\text{set}(T) = \{ z \in Z | \lim_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.
\]

Note: \(\text{set}(T) \) is cntbly rectifiable: \(\mathcal{H}^m(\text{set}(T) \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0. \)

Compactness Thm [AK]: If integral currents \(T_j \) have \(\text{set}(T_j) \subset K \) compact, and \(M(T_j) \leq V \) and \(M(\partial T_j) \leq A \) then \(\exists \) subseq \(T_{j_k} \) and an integral current \(T_\infty \) s.t. \(T_j(\omega) \to T_\infty(\omega) \) \(\forall \omega \) and \(\partial T_j(\eta) \to \partial T_\infty(\eta) \) \(\forall \eta \) and \(\lim inf_{j \to \infty} M(T_j) \geq M(T_\infty). \)
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$ is the inf over integral currents A, B

$$= \inf \left\{ \mathbf{M}_{area}(A) + \mathbf{M}_{vol}(B) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \right\}$$

Thm [SW-JDG]: If M_i^m are compact and $d_{SWIF}(M_1^m, M_2^m) = 0$ then there exists an orientation preserving isometry $F : M_1^m \to M_2^m$.

Pf: There exists $\varphi_i : M_i^m \to Z$ such that $\varphi_1#[[M_1^m]] = \varphi_2#[[M_2^m]]$.

Let $F = \varphi_2^{-1} \circ \varphi_1$.

Next: We need to define the SWIF limit spaces!
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$ is the inf over integral currents A, B

$$= \inf \left\{ \mathbf{M}_{area}(A) + \mathbf{M}_{vol}(B) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$.
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z (\varphi_1 #[[M_1^m]], \varphi_2 #[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$$d_F^Z (\varphi_1 #[[M_1^m]], \varphi_2 #[[M_2^m]])$$ is the inf over integral currents A and B

$$= \inf \left\{ \text{area}(A) + \text{vol}(B) : A + \partial B = \varphi_1 #[[M_1^m]] - \varphi_2 #[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip functions $(f, \pi_1, \ldots, \pi_m)$

$$\varphi #[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d_F^Z (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]])$ is the inf over integral currents $\begin{array}{l} A \quad B \end{array}$

$$= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1\#[[M_1^m]] - \varphi_2\#[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$$\varphi\#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1^m, M_2^m) = 0$ then \exists orientation preserving isometry $F : M_1^m \to M_2^m$.

Pf: $\exists \varphi_i : M_i^m \to Z$ s.t. $\varphi_1\#[[M_1^m]] = \varphi_2\#[[M_2^m]]$.

Let $F = \varphi_2^{-1} \circ \varphi_1$.

Next: We need to define the SWIF limit spaces!
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d_Z^F (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]])$ is the inf over integral currents $A \wedge B$

$$= \inf \left\{ \mathbf{M}_{area}(A) + \mathbf{M}_{vol}(B) : A + \partial B = \varphi_1\#[[M_1^m]] - \varphi_2\#[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$\varphi\#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M^m_i is:

$$d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F (\varphi_1\#[[M^m_1]], \varphi_2\#[[M^m_2]]) \mid \varphi_i : M^m_i \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M^m_i \to Z$.

$d^Z_F (\varphi_1\#[[M^m_1]], \varphi_2\#[[M^m_2]])$ is the inf over integral currents $\text{A} - \text{B}$

$$= \inf \left\{ M_{\text{area}}(\text{A}) + M_{\text{vol}}(\text{B}) : \text{A} + \partial \text{B} = \varphi_1\#[[M^m_1]] - \varphi_2\#[[M^m_2]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$$\varphi\#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge ... \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M^m_i is:

$$d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d_Z^F(\varphi_1#[[M^m_1]], \varphi_2#[[M^m_2]]) \mid \varphi_i : M^m_i \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M^m_i \to Z$.

$d_Z^F(\varphi_1#[[M^m_1]], \varphi_2#[[M^m_2]])$ is the inf over integral currents

$$= \inf \left\{ \begin{array}{l} \text{M}_{area}(A) + \text{M}_{vol}(B) : A + \partial B = \varphi_1#[[M^m_1]] - \varphi_2#[[M^m_2]] \end{array} \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$$\varphi#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf:
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1#, [[M_1^m]], \varphi_2#([[M_2^m]])) \mid \varphi_i : M_i^m \rightarrow Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \rightarrow Z$.

$d^Z_F (\varphi_1#, [[M_1^m]], \varphi_2#([[M_2^m]]))$ is the inf over integral currents

$$= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1#([[M_1^m]]) - \varphi_2#([[M_2^m]]) \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$$\varphi#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge ... \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \rightarrow M_2$.

Pf: $\exists \varphi_i : M_i \rightarrow Z$ s.t. $\varphi_1#[[M_1]] = \varphi_2#[[M_2]]$.
Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M^m_i is:

$$d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F (\varphi_1#[[M^m_1]], \varphi_2#[[M^m_2]]) \mid \varphi_i : M^m_i \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M^m_i \to Z$.

$$d^Z_F (\varphi_1#[[M^m_1]], \varphi_2#[[M^m_2]])$$ is the inf over integral currents A, B

$$= \inf \left\{ \text{M}_{\text{area}}(A) + \text{M}_{\text{vol}}(B) : A + \partial B = \varphi_1#[[M^m_1]] - \varphi_2#[[M^m_2]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, \ldots, \pi_m)$

$\varphi#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf: $\exists \varphi_i : M_i \to Z$ s.t. $\varphi_1#[[M_1]] = \varphi_2#[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$.

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d^Z_F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$ is the inf over integral currents A, B

$$= \inf \left\{ M \left(\begin{array}{c} A \end{array} \right) + M \left(\begin{array}{c} B \end{array} \right) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, ..., \pi_m)$

$$\varphi#[[M]](f, \pi_1, ..., \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, ..., \pi_m) = (1, f, \pi_1, ..., \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$

then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf: $\exists \varphi_i : M_i \to Z$ s.t. $\varphi_1#[[M_1]] = \varphi_2#[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$.
Sormani-Wenger: Intrinsic Flat Distance

The *intrinsic flat distance* between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$d_Z^F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$ is the inf over integral currents A, B

$$= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, \ldots, \pi_m)$

$$\varphi#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf: $\exists \varphi_i : M_i \to Z$ s.t. $\varphi_1#[[M_1]] = \varphi_2#[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$.

Next: We need to define the SWIF limit spaces!
Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_i^m is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

$$d^Z_F (\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]])$$ is the inf over integral currents $\text{A} \bigcup \text{B}$

$$= \inf \left\{ \begin{array}{c} \text{M}_{\text{area}}(\text{A}) + \text{M}_{\text{vol}}(\text{B}) : \text{A} + \partial \text{B} = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]] \end{array} \right\}$$

Recall: integral currents act on tuples of Lip fnctns $(f, \pi_1, \ldots, \pi_m)$

$$\varphi#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

and $\partial B(\omega) = B(d\omega)$ where $d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m)$.

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists orientation preserving isometry $F : M_1 \to M_2$.

Pf: $\exists \varphi_i : M_i \to Z$ s.t. $\varphi_1#[[M_1]] = \varphi_2#[[M_2]]$. Let $F = \varphi_2^{-1} \circ \varphi_1$.

Next: We need to define the SWIF limit spaces!
Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds \(M_i^m \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F(\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}
\]

where the infimum is taken over all complete metric spaces, \(Z \), and over all distance preserving maps \(\varphi_i : M_i^m \to Z \).

\[
d_Z^F(\varphi_1#[[M_1^m]], \varphi_2#[[M_2^m]]) \text{ is the inf over integral currents } A, B \]

\[
= \inf \left\{ \begin{array}{c}
\text{area}(A) + \text{vol}(B) : A + \partial B = \varphi_1#[[M_1^m]] - \varphi_2#[[M_2^m]]
\end{array} \right\}
\]

Recall: integral currents act on tuples of Lip fnctns \((f, \pi_1, \ldots, \pi_m)\)

\[
\varphi_#[[M]](f, \pi_1, \ldots, \pi_m) = \int_M (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

and \(\partial B(\omega) = B(d\omega) \) where \(d(f, \pi_1, \ldots, \pi_m) = (1, f, \pi_1, \ldots, \pi_m) \).

Thm [SW-JDG]: If \(M_i \) are compact and \(d_{SWIF}(M_1, M_2) = 0 \) then \(\exists \) orientation preserving isometry \(F : M_1 \to M_2 \).

Pf: \(\exists \varphi_i : M_i \to Z \) s.t. \(\varphi_1#[[M_1]] = \varphi_2#[[M_2]] \). Let \(F = \varphi_2^{-1} \circ \varphi_1 \).

Next: We need to define the SWIF limit spaces!
SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:
SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined (m-1)-rectifiable boundary. The charts are oriented and have integer valued weights, θ.
SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined (m-1)-rectifiable boundary. The charts are oriented and have integer valued weights, θ.
SWIF Limits: Integral Current Spaces

A sequence of compact Riemannian manifolds can converge in the intrinsic flat (SWIF) sense to the following limit which is an integral current space:

[Diagram showing a sequence of geometric structures converging to a limit]

Vague Definition from Lesson 1:

Defn: An Integral Current Space is m-rectifiable (which means it has countably many bi-Lipschitz charts of the same dimension m as the original sequence) and it has a well defined (m-1)-rectifiable boundary. The charts are oriented and have integer valued weights, θ.

Now we can truly define integral current spaces.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000):
an integral current, T, on Z is an integer rectifiable current s.t.

∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise

disjoint biLip charts $\phi_i: A_i \to \phi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$T(f, \pi_1, \ldots, \pi_m) = \infty \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \phi) d(\pi_1 \circ \phi) \wedge \ldots \wedge d(\pi_m \circ \phi)$

with mass $M(T) = ||T||(Z)$ where

$||T|| = \lambda_{\theta}(H^m set T)$ and $set(T) = \{ z \in Z | \lim inf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}$.

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t.

$set(T) = X$.

Furthermore:

$M(M) = M(T)$ and $\partial M = (set(\partial T), d, \partial T)$.

Thus X is cntbly H^m rectifiable: it has cntbly many pairwise

disjoint Lip charts $\phi_i: A_i \to X$ s.t.

$H^m(X \setminus \bigcup_{i=1}^{\infty} \phi_i(A_i)) = 0$.
SWIF limits are Integral Current Spaces

Recall Flat limits of **oriented submanifolds** are **integral currents**:

Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with **mass** $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (\mathcal{H}_m \perp \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}.$$
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, \(T \), on \(Z \) is an integer rectifiable current s.t. \(\partial T \) is also integer rectifiable.

Defn: an integer rectifiable current, \(T \), has cntbly many pairwise disjoint biLip charts \(\varphi_i : A_i \to \varphi_i(A_i) \subset Z \) and weights \(a_i \in \mathbb{Z} \) s.t.

\[
T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

with mass \(M(T) = \| T \| (Z) \) where \(\| T \| = \lambda \theta (\mathcal{H}_m \downarrow \text{set } T) \) and

\[
\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.
\]

Key Idea: Integral currents generalize oriented submanifolds in \(Z \).
SWIF limits are Integral Current Spaces

Recall Flat limits of **oriented submanifolds** are **integral currents**:

Ambrosio-Kirchheim (2000): an integral current, \(T \), on \(Z \) is an integer rectifiable current s.t. \(\partial T \) is also integer rectifiable.

Defn: an **integer rectifiable current**, \(T \), has cntbly many pairwise disjoint biLip charts \(\varphi_i : A_i \to \varphi_i(A_i) \subset Z \) and weights \(a_i \in \mathbb{Z} \) s.t.

\[
T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)
\]

with **mass** \(\mathbf{M}(T) = \| T \| (Z) \) where \(\| T \| = \lambda \theta (\mathcal{H}_m \downarrow \text{set} T) \) and

\[
\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.
\]

Key Idea: Integral currents generalize **oriented submanifolds** in \(Z \).

Key New Idea: generalize **oriented Riemannian Manifolds**.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta(H_m \perp \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r)) / r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (H_m \perp \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$.

Furthermore: $M(M) = M(T)$ and $\partial M = (\text{set}(\partial T), d, \partial T)$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = ||T||(Z)$ where $||T|| = \lambda \theta (\mathcal{H}_m \sqsubset \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$. Furthermore: $M(M) = M(T)$ and $\partial M = (\text{set}(\partial T), d, \partial T)$.

Thus X is cntbly \mathcal{H}_m rectifiable: it has cntbly many pairwise disjoint Lip charts $\varphi_i : A_i \to X$ s.t. $\mathcal{H}_m (X \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0.$
Oriented Riemannian Mnflds and Integral Current Spaces
An oriented Riemannian mnfld $\left(M^m, g \right)$ is a metric space $\left(M, d_M \right)$
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[
Vol(U) = \mathcal{H}^m(U) \quad \text{is the Hausdorff measure.}
\]
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \; C(0) = p, \; C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\(Vol(U) = \mathcal{H}^m(U)\) is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}
\]

So it has a countable collection of biLipschitz charts.
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold (M^m, g) is a metric space (M, d_M) with a smooth collection of charts

$$d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}$$

where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds$

$Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure.

An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$ where

$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta : M \to \mathbb{Z}$
An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q\}
\]

where

\[
L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds
\]

\[
\text{Vol}(U) = \mathcal{H}^m(U) \text{ is the Hausdorff measure.}
\]

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \{z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)

The mass \(M(U) = \|T\|(U)\) has \(\|T\| = \theta \lambda \mathcal{H}^m\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold (M^m, g) is a metric space (M, d_M) with a smooth collection of charts

$$d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}$$

where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds$

$Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure.

An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$ where

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta : M \to \mathbb{Z}$

The mass $\mathcal{M}(U) = \|T\|(U)$ has $\|T\| = \theta \lambda \mathcal{H}^m$.

It might not be connected and might not have any geodesics.
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \left\{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \right\}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[
\text{Vol}(U) = \mathcal{H}^m(U) \text{ is the Hausdorff measure.}
\]

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \left\{ z \in \mathbb{Z} \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \right\}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)

The mass \(M(U) = \|T\|(U)\) has \(\|T\| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d_M, \partial T)\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \rightarrow M, \ C(0) = p, \ C(1) = q \}
\]
where
\[
L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds
\]

\[
\text{Vol}(U) = \mathcal{H}^m(U)
\]
is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where
\[
\text{set}(T) = \{ z \in Z | \liminf_{r \rightarrow 0} \| T \|(B(z, r))/r^m > 0 \}
\]
So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \rightarrow \mathbb{Z}\)

The mass \(\mathbf{M}(U) = \| T \|(U)\) has \(\| T \| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d_M, \partial T)\).
An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf \{L_g(C) : C : [0, 1] \to M, C(0) = p, C(1) = q\}
\]
where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)
\[
Vol(U) = \mathcal{H}^m(U) \text{ is the Hausdorff measure.}
\]
An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where
\[
\text{set}(T) = \{z \in Z | \lim \inf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}
\]
So it has a countable collection of biLipschitz charts
that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)
The mass \(\mathbf{M}(U) = \|T\|(U)\) has \(\|T\| = \theta \lambda \mathcal{H}^m\).
It might not be connected and might not have any geodesics.
Its boundary is \(\partial M = (\text{set}(\partial T), d_M, \partial T)\).
A compact oriented manifold \((M^m, g)\) is an integral current space \((M, d_M, [\![M]\!]\)) with weight \(\theta = 1\) and \(\mathbf{M}(U) = \text{Vol}(U) = \mathcal{H}^m(U)\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold (M^m, g) is a metric space (M, d_M) with a smooth collection of charts

$$d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}$$

where $L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds$

$Vol(U) = \mathcal{H}^m(U)$ is the Hausdorff measure.

An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$ where

$$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}$$

So it has a countable collection of biLipschitz charts that are oriented and weighted by $\theta : M \to \mathbb{Z}$

The mass $M(U) = \| T \|(U)$ has $\| T \| = \theta \lambda \mathcal{H}^m$.

It might not be connected and might not have any geodesics.

Its boundary is $\partial M = (\text{set}(\partial T), d_M, \partial T)$.

A compact oriented manifold (M^m, g) is an integral current space $(M, d_M, [[M]])$ with weight $\theta = 1$ and $M(U) = Vol(U) = \mathcal{H}^m(U)$.

Its boundary $(\partial M, d_M, [[\partial M]])$ has the restricted distance d_M.
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_{\mathcal{F}}(\varphi_1# T_1, \varphi_2# T_2) \mid \varphi_i : M_i^m \to \mathcal{Z} \right\}$$

where $\varphi# T(f, \pi_1, \ldots, \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, \ldots, \pi_m \circ \varphi)$,
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi\# T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d^Z_F (\varphi_1\# T_1, \varphi_2\# T_2)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ M_{area}(A) + M_{vol}(B) : A + \partial B = \varphi_1\# T_1 - \varphi_2\# T_2 \right\}$$
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces \(M_i^m = (X_i, d_i, T_i) \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where \(\varphi#T(f, \pi_1, \ldots, \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, \ldots, \pi_m \circ \varphi) \), and
where the infimum is taken over all complete metric spaces, \(Z \),
and over all distance preserving maps \(\varphi_i : M_i^m \to Z \).

Here: \(d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \) is the Federer-Fleming Flat dist

\[
= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1#T_1 - \varphi_2#T_2 \right\}
\]
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces \(M_i^m = (X_i, d_i, T_i) \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where \(\varphi#T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi) \), and
where the infimum is taken over all complete metric spaces, \(Z \),
and over all distance preserving maps \(\varphi_i : M_i^m \to Z \).

Here: \(d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \) is the Federer-Fleming Flat dist

\[
= \inf \left\{ \mathbf{M}_{\text{area}}(\mathbf{A}) + \mathbf{M}_{\text{vol}}(\mathbf{B}) : \mathbf{A} + \partial \mathbf{B} = \varphi_1#T_1 - \varphi_2#T_2 \right\}
\]

Thm [SW-JDG]: If \(M_i \) are compact and \(d_{SWIF}(M_1, M_2) = 0 \) then \(\exists \) a current preserving isometry \(F : M_1 \to M_2 \).
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^Z (\varphi_1# T_1, \varphi_2# T_2) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi# T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_Z^Z (\varphi_1# T_1, \varphi_2# T_2)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathbf{M}_{\text{area}}(\textcolor{green}{A}) + \mathbf{M}_{\text{vol}}(\textcolor{yellow}{B}) : \textcolor{green}{A} + \partial \textcolor{yellow}{B} = \varphi_1# T_1 - \varphi_2# T_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$:

$$d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F# T_1 = T_2.$$
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1\#T_1, \varphi_2\#T_2) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi\#T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi)$, and where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d^Z_F (\varphi_1\#T_1, \varphi_2\#T_2)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \text{M}_{\text{area}}(\text{A}) + \text{M}_{\text{vol}}(\text{B}) : \text{A} + \partial \text{B} = \varphi_1\#T_1 - \varphi_2\#T_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$:

$$d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F\#T_1 = T_2.$$
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M^m_i = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F(\varphi_1\#T_1, \varphi_2\#T_2) \mid \varphi_i : M^m_i \to Z \right\}$$

where $\varphi\#T(f, \pi_1, \ldots, \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, \ldots, \pi_m \circ \varphi)$, and

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M^m_i \to Z$.

Here: $d^Z_F(\varphi_1\#T_1, \varphi_2\#T_2)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ M_{area}(A) + M_{vol}(B) : A + \partial B = \varphi_1\#T_1 - \varphi_2\#T_2 \right\}$$

Thm [SW-JDG]: If M_i are compact and $d_{SWIF}(M_1, M_2) = 0$ then \exists a current preserving isometry $F : M_1 \to M_2$:

$$d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \text{ and } F\#T_1 = T_2.$$

Pf: Show inf achieved: $\exists \varphi_i : M_i \to Z$ s.t. $\varphi_1\#T_1 = \varphi_2\#T_2$.
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces \(M_i^m = (X_i, d_i, T_i) \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where \(\varphi#T(f, \pi_1, …, \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, …, \pi_m \circ \varphi) \), and where the infimum is taken over all complete metric spaces, \(Z \), and over all distance preserving maps \(\varphi_i : M_i^m \to Z \).

Here: \(d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \) is the Federer-Fleming Flat dist

\[
= \inf \left\{ \mathbf{M}_{\text{area}}(\varphi_1#T_1) + \mathbf{M}_{\text{vol}}(\varphi_2#T_2) : \varphi_1#T_1 - \varphi_2#T_2 \right\}
\]

Thm [SW-JDG]: If \(M_i \) are compact and \(d_{SWIF}(M_1, M_2) = 0 \)

then \(\exists \) a current preserving isometry \(F : M_1 \to M_2 : \)

\[
d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \ \text{and} \ F#T_1 = T_2.
\]

Pf: Show inf achieved: \(\exists \varphi_i : M_i \to Z \) s.t. \(\varphi_1#T_1 = \varphi_2#T_2 \).

So set(\(\varphi_1#T_1 \)) = set(\(\varphi_2#T_2 \)) and \(F = \varphi_2^{-1} \circ \varphi_1 \) is defined.
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces \(M_i^m = (X_i, d_i, T_i) \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^2(\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where \(\varphi\# T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi) \), and

where the infimum is taken over all complete metric spaces, \(Z \),

and over all distance preserving maps \(\varphi_i : M_i^m \to Z \).

Here: \(d_Z^2(\varphi_1\# T_1, \varphi_2\# T_2) \) is the Federer-Fleming Flat dist

\[
= \inf \left\{ M_{\text{area}}(\text{A}) + M_{\text{vol}}(\text{B}) : \text{A} + \partial \text{B} = \varphi_1\# T_1 - \varphi_2\# T_2 \right\}
\]

Thm [SW-JDG]: If \(M_i \) are compact and \(d_{SWIF}(M_1, M_2) = 0 \)

then \(\exists \) a current preserving isometry \(F : M_1 \to M_2 : \)

\(d_2(F(p), F(q)) = d_1(p, q) \ \forall p, q \in X_1 \) and \(F\# T_1 = T_2 \).

Pf: Show inf achieved: \(\exists \varphi_i : M_i \to Z \) s.t. \(\varphi_1\# T_1 = \varphi_2\# T_2 \).

So \(\text{set}(\varphi_1\# T_1) = \text{set}(\varphi_2\# T_2) \) and \(F = \varphi_2^{-1} \circ \varphi_1 \) is defined.
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M^m_1, 0^m) = \inf \left\{ d^Z_F (\varphi_1\# T_1, \varphi_2\#0) \mid \varphi_i : M^m_i \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M^m_i \to Z$. (φ_1 trivial)

Here: $d^Z_F (\varphi_1\# T_1, \varphi_2\#0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathbf{M}_{area}(A) + \mathbf{M}_{vol}(B) : A + \partial B = \varphi_1\# T_1 - \varphi_2\#0 \right\}$$
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d^Z_F(\varphi_1\# T_1, \varphi_2\# 0) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d^Z_F(\varphi_1\# T_1, \varphi_2\# 0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \mathrm{M}_{area}(A) + \mathrm{M}_{vol}(B) : A + \partial B = \varphi_1\# T_1 - \varphi_2\# 0 \right\}$$

Thm [SW]: If M Riemannian then $d_{SWIF}(M^m, 0^m) \leq \mathrm{Vol}(M)$.
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M^m_1, 0^m) = \inf \left\{ d_{F}^{Z} (\varphi_1# T_1, \varphi_2#0) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_{F}^{Z} (\varphi_1# T_1, \varphi_2#0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1# T_1 - \varphi_2#0 \right\}$$

Thm [SW]: If M Riemannian then $d_{SWIF}(M^m, 0^m) \leq \text{Vol}(M)$.

Pf: Take $Z = M$, $\varphi_1 = id$, $A = id_#[[M]] = [[M]]$, and $B = 0$. □
The zero space \(0^m = (\emptyset, 0, 0)\) is an integral current space

\[
d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d^Z_F (\varphi_1# T_1, \varphi_2#0) \mid \varphi_i : M_i^m \rightarrow Z \right\}
\]

where the infimum is taken over all complete metric spaces, \(Z\), and over all dist. pres. maps \(\varphi_i : M_i^m \rightarrow Z\). (\(\varphi_1\) trivial)

Here: \(d^Z_F (\varphi_1# T_1, \varphi_2#0)\) is the Federer-Fleming Flat dist

\[
= \inf \left\{ \begin{array}{c}
M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1# T_1 - \varphi_2#0
\end{array} \right\}
\]

Thm [SW]: If \(M\) Riemannian then \(d_{SWIF}(M^m, 0^m) \leq \text{Vol}(M)\).

Pf: Take \(Z = M\), \(\varphi_1 = id\), \(A = id#[[M]] = [[M]]\), and \(B = 0\). □

Example: \(d_{SWIF}(S^m, 0^m) \leq \text{Vol}(S^{m+1})/2\).
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_Z^F(\varphi_1\# T_1, \varphi_2\# 0) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_Z^F(\varphi_1\# T_1, \varphi_2\# 0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \text{M}_{\text{area}}(A) + \text{M}_{\text{vol}}(B) : A + \partial B = \varphi_1\# T_1 - \varphi_2\# 0 \right\}$$

Thm [SW]: If M Riemannian then $d_{SWIF}(M^m, 0^m) \leq \text{Vol}(M)$.

Pf: Take $Z = M$, $\varphi_1 = \text{id}$, $A = \text{id}\#[[M]] = [[M]]$, and $B = 0$. □

Example: $d_{SWIF}(S^m, 0^m) \leq \text{Vol}(S^{m+1})/2$.

Pf: Take $Z = S^{m+1}$ so $\varphi_1 : S^m \to \text{Equator} \subset S^{m+1}$ is dist pres.
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d^Z_F (\varphi_1# T_1, \varphi_2#0) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d^Z_F (\varphi_1# T_1, \varphi_2#0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \text{M}_{\text{area}}(A) + \text{M}_{\text{vol}}(B) : A + \partial B = \varphi_1# T_1 - \varphi_2#0 \right\}$$

Thm [SW]: If M Riemannian then $d_{SWIF}(M^m, 0^m) \leq \text{Vol}(M)$.

Pf: Take $Z = M$, $\varphi_1 = id$, $A = id#[[M]] = [[M]]$, and $B = 0$. □

Example: $d_{SWIF} (S^m, 0^m) \leq \text{Vol}(S^{m+1})/2$.

Pf: Take $Z = S^{m+1}$ so $\varphi_1 : S^m \to \text{Equator} \subset S^{m+1}$ is dist pres. (Note $Z = D^{m+1}$ fails to have dist. pres $\varphi_1 : S^m \to Z$).
The zero space $0^m = (\emptyset, 0, 0)$ is an integral current space

$$d_{SWIF}(M_1^m, 0^m) = \inf \left\{ d_Z^F(\varphi_1\# T_1, \varphi_2\#0) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all dist. pres. maps $\varphi_i : M_i^m \to Z$. (φ_1 trivial)

Here: $d_Z^F(\varphi_1\# T_1, \varphi_2\#0)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ M_{\text{area}}(A) + M_{\text{vol}}(B) : A + \partial B = \varphi_1\# T_1 - \varphi_2\#0 \right\}$$

Thm [SW]: If M Riemannian then $d_{SWIF}(M^m, 0^m) \leq \text{Vol}(M)$.

Pf: Take $Z = M$, $\varphi_1 = id$, $A = id_{\#}[[M]] = [[M]]$, and $B = 0$. □

Example: $d_{SWIF}(S^m, 0^m) \leq \text{Vol}(S^{m+1})/2$.

Pf: Take $Z = S^{m+1}$ so $\varphi_1 : S^m \to \text{Equator} \subset S^{m+1}$ is dist pres. (Note $Z = D^{m+1}$ fails to have dist. pres $\varphi_1 : S^m \to Z$).

Take $B = [[S^{m+1}_+]]$ so $\partial B = \varphi_1\#[[S^m]]$ and $A = 0$. □
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F(\varphi_1\#T_1, \varphi_2\#T_2) \mid \varphi_i : M^m_i \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M^m_i \to Z \).

Thm: The infimum is achieved, so we can choose

\[Z' = \text{set}(A) \cup \text{set}(B) \]

which is separable and rectifiable.
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z (\varphi_1# T_1, \varphi_2# T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose

\(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F (\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\}$$

where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = \text{set}(A) \cup \text{set}(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0)$ then $\exists Z'_j$ s.t. $d_{SWIF}(M_j, M_0) = d^Z_j F (\varphi_j#T_j, \varphi_{0,j#}T_0)$
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose \(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)

then \(\exists Z'_j \) s.t. \(d_{SWIF}(M_j, M_0) = d_{Z_j}^F(\varphi_j#T_j, \varphi_{0,j}#T_0) \)

which we can glue along the images \(\varphi_{0,j}(M_0) \) to show
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose \(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)

then \(\exists Z_j' \) s.t. \(d_{SWIF}(M_j, M_0) = d_{Z_j'}^F (\varphi_j\# T_j, \varphi_{0,j}\# T_0) \)

which we can glue along the images \(\varphi_{0,j}(M_0) \) to show \(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \)

s.t. \(d_Z^F (\varphi_j\# T_j, \varphi_{0}\# T_0) \to 0 \) and \(\varphi_j\# T_j(\omega) \to \varphi_{0}\# T_0(\omega) \).
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d^Z_F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose \(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \overset{SWIF}{\longrightarrow} M_0 = (X_0, d_0, T_0) \)

then \(\exists Z'_j \) s.t. \(d_{SWIF}(M_j, M_0) = d^Z'_F(\varphi_j#T_j, \varphi_0.j#T_0) \)

which we can glue along the images \(\varphi_{0,j}(M_0) \) to show

\(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \)

s.t. \(d^Z_F(\varphi_j#T_j, \varphi_0#T_0) \to 0 \) and \(\varphi_j#T_j(\omega) \to \varphi_0#T_0(\omega) \).

Thus by Ambrosio-Kirchheim Theory:
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z(\varphi_1^# T_1, \varphi_2^# T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose \(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)

then \(\exists Z_j' \) s.t. \(d_{SWIF}(M_j, M_0) = d_F^{Z_j'}(\varphi_j^# T_j, \varphi_{0,j}^# T_0) \)

which we can glue along the images \(\varphi_{0,j}(M_0) \) to show

\(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \)

s.t. \(d_F^Z(\varphi_j^# T_j, \varphi_0^# T_0) \to 0 \) and \(\varphi_j^# T_j(\omega) \to \varphi_0^# T_0(\omega) \).

Thus by Ambrosio-Kirchheim Theory:

\[M_j \xrightarrow{SWIF} M_\infty \implies \partial M_j \xrightarrow{SWIF} \partial M_\infty \]
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F(\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose

\(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)

then \(\exists Z'_j \) s.t. \(d_{SWIF}(M_j, M_0) = d_{\text{ref}}(\varphi_j\# T_j, \varphi_0\# T_0) \)

which we can glue along the images \(\varphi_{0,j}(M_0) \) to show

\(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \)

s.t. \(d_Z^F(\varphi_j\# T_j, \varphi_0\# T_0) \to 0 \) and \(\varphi_j\# T_j(\omega) \to \varphi_0\# T_0(\omega) \).

Thus by Ambrosio-Kirchheim Theory:

\[M_j \xrightarrow{SWIF} M_\infty \implies \partial M_j \xrightarrow{SWIF} \partial M_\infty \]

\[M_j \xrightarrow{SWIF} M_\infty \implies \lim \inf_{j \to \infty} M(M_j) \geq M(M_\infty) \]
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{GH} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{\text{SWIF}}$ where $M_{\text{SWIF}} \subset M_{GH}$ or $M_{\text{SWIF}} = 0$.

How do we know which regions disappear? Use Filling Volumes!
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{GH} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{\text{SWIF}}$ where $M_{\text{SWIF}} \subset M_{GH}$ or $M_{\text{SWIF}} = 0$.

Proof: By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_Z^H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. How do we know which regions disappear? Use Filling Volumes!
SWIF Compactness Theorems

Thm [SW]: If \(M_j \xrightarrow{GH} M_{GH} \) and \(\text{Vol}(M_j) \leq V_0 \) and \(\text{Vol}(\partial M_j) \leq A_0 \) then \(\exists M_{j_k} \xrightarrow{SWIF} M_{SWIF} \) where \(M_{SWIF} \subset M_{GH} \) or \(M_{SWIF} = 0 \).

Proof: By Gromov’s Compactness Thm, \(\exists \) compact \(Z \) and dist pres maps \(\varphi_j : M_j \to Z \) s.t. \(d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0 \).
By Ambrosio-Kirchheim Compactness: \(\exists \) subseq \(\varphi_{j\#} T_j \to T_\infty \).
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{GH} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{SWIF} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \rightarrow Z$ s.t. $d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \rightarrow 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#} T_j \rightarrow T_\infty$. $\text{set}(T_\infty) \subset \varphi_{GH}(M_{GH}) \subset Z$.
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{GH} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{SWIF} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#} T_j \to T_\infty$. set$(T_\infty) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_\infty), d_Z, T_\infty)$ \(\square\).
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{GH} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$
then $\exists M_{j,k} \xrightarrow{SWIF} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof:
By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$.
By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j#} T_j \to T_\infty$.
$\text{set}(T_\infty) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_\infty), d^Z, T_\infty)$ \square.

Wenger Compactness Thm: If $\text{Diam}(M_j) \leq D$ and $M(M_j) \leq V$ and $M(\partial M_j) \leq A_0$ then $\exists M_{j,k} \xrightarrow{SWIF} M_{SWIF}$ possibly $M_{SWIF} = 0$.

Diagrams:
- SWIF Compactness
- GH Compactness
- Wenger Compactness
SWIF Compactness Theorems

Thm [SW]: If \(M_j \xrightarrow{GH} M_{GH} \) and \(\text{Vol}(M_j) \leq V_0 \) and \(\text{Vol}(\partial M_j) \leq A_0 \) then \(\exists M_{j_k} \xrightarrow{SWIF} M_{SWIF} \) where \(M_{SWIF} \subset M_{GH} \) or \(M_{SWIF} = 0 \).

Proof: By Gromov’s Compactness Thm, \(\exists \) compact \(Z \) and dist pres maps \(\varphi_j : M_j \to Z \) s.t. \(d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0 \).

By Ambrosio-Kirchheim Compactness: \(\exists \) subseq \(\varphi_j#T_j \to T_\infty \).

set(\(T_\infty \)) \(\subset \varphi_{GH}(M_{GH}) \subset Z \). Let \(M_{SWIF} = (\text{set}(T_\infty), d_Z, T_\infty) \). □

Wenger Compactness Thm: If \(\text{Diam}(M_j) \leq D \) and \(\text{M}(M_j) \leq V \) and \(\text{M}(\partial M_j) \leq A_0 \) then \(\exists M_{j_k} \xrightarrow{SWIF} M_{SWIF} \) possibly \(M_{SWIF} = 0 \).
SWIF Compactness Theorems

Thm [SW]: If $M_j \xrightarrow{\text{GH}} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d_Z^H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_j \# T_j \to T_\infty$. $\text{set}(T_\infty) \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\text{set}(T_\infty), d_Z, T_\infty)$ \square.

Wenger Compactness Thm: If $\text{Diam}(M_j) \leq D$ and $M(M_j) \leq V$ and $M(\partial M_j) \leq A_0$ then $\exists M_{j_k} \xrightarrow{\text{SWIF}} M_{SWIF}$ possibly $M_{SWIF} = 0$. How do we know which regions disappear?
Thm [SW]: If $M_j \overset{GH}{\to} M_{GH}$ and $\text{Vol}(M_j) \leq V_0$ and $\text{Vol}(\partial M_j) \leq A_0$ then $\exists M_{j_k} \overset{SWIF}{\to} M_{SWIF}$ where $M_{SWIF} \subset M_{GH}$ or $M_{SWIF} = 0$.

Proof: By Gromov’s Compactness Thm, \exists compact Z and dist pres maps $\varphi_j : M_j \to Z$ s.t. $d^Z_H(\varphi_j(M_j), \varphi_{GH}(M_{GH})) \to 0$. By Ambrosio-Kirchheim Compactness: \exists subseq $\varphi_{j\#} T_j \to T_\infty$. $\set{T_\infty} \subset \varphi_{GH}(M_{GH}) \subset Z$. Let $M_{SWIF} = (\set{T_\infty}, d_Z, T_\infty)$ \square.

Wenger Compactness Thm: If $\text{Diam}(M_j) \leq D$ and $M(M_j) \leq V$ and $M(\partial M_j) \leq A_0$ then $\exists M_{j_k} \overset{SWIF}{\to} M_{SWIF}$ possibly $M_{SWIF} = 0$.

How do we know which regions disappear? Use Filling Volumes!
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \)
such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \rightarrow \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F \# \partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2 \).
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2. \)

Pf: Take \(N = S^{m+1}_+ \) so \(F : S^m \to \text{Equator} \subset S^{m+1}_+ \) is dist pres □
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[\text{FillVol}(\mathcal{M}^m) = \inf \{ \mathcal{M}(\mathcal{N}^{n+1}) | \partial \mathcal{N}^{n+1} = \mathcal{M}^m \} \]

where the inf is over integral current spaces \(\mathcal{N}^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : \mathcal{M}^m \to \partial \mathcal{N}^{n+1} \).

Recall \(\partial \mathcal{N} = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2 \).

Pf: Take \(N = S^{m+1}_+ \) so \(F : S^m \to \text{Equator} \subset S^{m+1}_+ \) is dist pres \(\square \)

Open: Is \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) = \text{Vol}(S^{m+1})/2 \)? Pu Conj
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \{ \text{M}(N^{n+1}) \mid \partial N^{n+1} = M^m \}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \)
such that \(\exists \) current preserving isometry \(F : M^m \rightarrow \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \)
so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_{\#} \partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2 \).

Pf: Take \(N = S_{m+1}^+ \) so \(F : S^m \rightarrow \text{Equator} \subset S_{m+1}^+ \) is dist pres \(\Box \)

Open: Is \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) = \text{Vol}(S^{m+1})/2 \)? Pu Conj

Example: \(\text{FillVol}((S^m, d_{D^{m+1}}, [[S^m]])) \leq \text{Vol}(D^{m+1}) \).
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \left\{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \right\} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_# \partial T_N = T_M \).

Example: \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) \leq \text{Vol}(\mathbb{S}^{m+1})/2 \).

Pf: Take \(N = \mathbb{S}^{m+1}_+ \) so \(F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+ \) is dist pres \(\square \)

Open: Is \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]])) = \text{Vol}(\mathbb{S}^{m+1})/2 \)? Pu Conj

Example: \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{D}^m+1}, [[\mathbb{S}^m]])) \leq \text{Vol}(\mathbb{D}^{m+1}) \).

Pf: Take \(N = \mathbb{D}^{m+1}_+ \) so \(F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1} \) is dist pres \(\square \)
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2 \).

Pf: Take \(N = S^{m+1}_+ \) so \(F : S^m \to \text{Equator} \subset S^{m+1}_+ \) is dist pres \(\square \)

Open: Is \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) = \text{Vol}(S^{m+1})/2 ? \) Pu Conj

Example: \(\text{FillVol}((S^m, d_{D^{m+1}}, [[S^m]])) \leq \text{Vol}(D^{m+1}) \).

Pf: Take \(N = D^{m+1}_+ \) so \(F : S^m \to \partial D^{m+1} \subset D^{m+1} \) is dist pres \(\square \)

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) | \partial N^{n+1} = M^m \}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_{\#}\partial T_N = T_M \).

Example: \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) \leq \text{Vol}(S^{m+1})/2 \).

Pf: Take \(N = S^{m+1}_+ \) so \(F : S^m \to \text{Equator} \subset S^{m+1}_+ \) is dist pres \(\square \)

Open: Is \(\text{FillVol}((S^m, d_{S^m}, [[S^m]])) = \text{Vol}(S^{m+1})/2 \)? Pu Conj

Example: \(\text{FillVol}((S^m, d_{D^{m+1}}, [[S^m]])) \leq \text{Vol}(D^{m+1}) \).

Pf: Take \(N = D^{m+1}_+ \) so \(F : S^m \to \partial D^{m+1} \subset D^{m+1} \) is dist pres \(\square \)

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]]) \),
Adapting Gromov’s Filling Volume [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).

Example: \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]) \leq \text{Vol}(\mathbb{S}^{m+1})/2. \)

Pf: Take \(N = \mathbb{S}^{m+1}_+ \) so \(F : \mathbb{S}^m \to \text{Equator} \subset \mathbb{S}^{m+1}_+ \) is dist pres \(\square \)

Open: Is \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{S}^m}, [[\mathbb{S}^m]]) = \text{Vol}(\mathbb{S}^{m+1})/2? \) Pu Conj

Example: \(\text{FillVol}((\mathbb{S}^m, d_{\mathbb{D}^m}, [[\mathbb{S}^m]]) \leq \text{Vol}(\mathbb{D}^{m+1}). \)

Pf: Take \(N = \mathbb{D}^{m+1}_+ \) so \(F : \mathbb{S}^m \to \partial \mathbb{D}^{m+1} \subset \mathbb{D}^{m+1} \) is dist pres \(\square \)

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]]) \) is an integral current space and so is \(\partial (B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]]) \), and

\[\text{FillVol}((\partial (B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)). \]
Filling Volumes and Balls [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \) and \(F_\# \partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]]), \) and

\[\text{FillVol}(\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)). \]
Filling Volumes and Balls [Portegies-Sormani]:

$$\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) | \partial N^{n+1} = M^m \}$$

where the inf is over integral current spaces $N^{n+1} = (X_N, d_N, T_N)$ such that \exists current preserving isometry $F : M^m \to \partial N^{n+1}$.

Recall $\partial N = (\text{set}(\partial T_N), d_N, \partial T_N)$ has the restricted distance d_N so $d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M$ and $F_\# \partial T_N = T_M$.

Thm: If $B(p, r)$ is a ball in an integral current space M then for a.e. $r > 0$ $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space and so is $\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]]))$, and

$$\text{FillVol}(\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)).$$

Recall: $p \in \text{set}(T)$ if $\lim \inf_{r \to 0} M(B(p, r))/r^m > 0$.

Corollary: $p \in \text{set}(T)$ if $\lim \inf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0$.

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: $M_{GH} = M_{SWIF}$ for M_j with $\text{Vol}(M_j) \geq V$ and $\text{Ricci} \geq H$.

Pf: Perelman Colding Gv: $\exists C_m H, V$ s.t. $\text{FillVol}(\partial B(p, r)) \geq C_m V, H r^m$.

combined with Corollary above and Portegies-Sormani (next slide) which says $B_j \text{SWIF} \rightarrow B_\infty = \Rightarrow \text{FillVol}(\partial B_j) \rightarrow \text{FillVol}(\partial B_\infty)$. \square
Filling Volumes and Balls [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) | \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that there exists a current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F \# \partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]]) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]]) \), and

\[\text{FillVol}(\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)). \]

Recall: \(p \in \text{set}(T) \) if \(\liminf_{r \to 0} M(B(p, r))/r^m > 0 \).

Coro: \(p \in \text{set}(T) \) if \(\liminf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0 \).
Filling Volumes and Balls [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \left\{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \right\}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \rightarrow \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \ \forall \ p, q \in X_M \) and \(F\#\partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]]) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]]) = (\partial B(p, r), d_M, [[\partial B(p, r)]]) \), and

\[
\text{FillVol}(\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)).
\]

Recall: \(p \in \text{set}(T) \) if \(\lim \inf_{r \rightarrow 0} M(B(p, r))/r^m > 0 \).

Coro: \(p \in \text{set}(T) \) if \(\lim \inf_{r \rightarrow 0} \text{FillVol}(\partial B(p, r))/r^m > 0 \).

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: \(M_{GH} = M_{SWIF} \) for \(M_j \) with \(\text{Vol}(M_j) \geq V \) and \(\text{Ricci} \geq H \).
Filling Volumes and Balls [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \left\{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \right\}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N)\) such that \(\exists\) current preserving isometry \(F : M^m \to \partial N^{n+1}\).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N)\) has the restricted distance \(d_N\) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M\) and \(F_\# \partial T_N = T_M\).

Thm: If \(B(p, r)\) is a ball in an integral current space \(M\) then for a.e. \(r > 0\) \((B(p, r), d_M, [B(p, r)])\) is an integral current space and so is \(\partial(B(p, r), d_M, [B(p, r)]) = (\partial B(p, r), d_M, [\partial B(p, r)])\), and

\[
\text{FillVol}((\partial(B(p, r), d_M, [B(p, r)])) \leq M(B(p, r)).
\]

Recall: \(p \in \text{set}(T)\) if \(\liminf_{r \to 0} M(B(p, r))/r^m > 0\).

Coro: \(p \in \text{set}(T)\) if \(\liminf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0\).

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: \(M_{GH} = M_{SWIF}\) for \(M_j\) with \(\text{Vol}(M_j) \geq V\) and \(\text{Ricci} \geq H\).

Pf: Perelman Colding Gv: \(\exists C_{H,V}^m\) s.t. \(\text{FillVol}(\partial B(p, r)) \geq C_{V,H}^m r^m\).
Filling Volumes and Balls [Portegies-Sormani]:

\[
\text{FillVol}(M^m) = \inf \left\{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \right\}
\]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_# \partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]]), \) and

\[
\text{FillVol}((\partial(B(p, r), d_M, [[B(p, r)]]))) \leq M(B(p, r)).
\]

Recall: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} M(B(p, r))/r^m > 0 \).

Coro: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0 \).

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: \(M_{GH} = M_{SWIF} \) for \(M_j \) with \(\text{Vol}(M_j) \geq V \) and \(\text{Ricci} \geq H \).

Pf: Perelman Colding Gv: \(\exists C^m_{H, V} \) s.t. \(\text{FillVol}(\partial B(p, r)) \geq C^m_{V, H} r^m \).

combined with Corollary above and Portegies-Sormani (next slide) which says \(B_j \xrightarrow{\text{SWIF}} B_\infty \implies \text{FillVol}(\partial B_j) \to \text{FillVol}(\partial B_\infty). \) □
Filling Volumes and Balls [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \ \forall p, q \in X_M \) and \(F \# \partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]])), and

\[\text{FillVol}(\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)). \]

Recall: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} M(B(p, r))/r^m > 0 \).

Coro: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0 \).

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: \(M_{GH} = M_{SWIF} \) for \(M_j \) with \(\text{Vol}(M_j) \geq V \) and \(\text{Ricci} \geq H \).

Pf: Perelman Colding Gv: \(\exists C_{H, V}^m \) s.t. \(\text{FillVol}(\partial B(p, r)) \geq C_{V, H}^m r^m \). combined with Corollary above and Portegies-Sormani (next slide) which says \(B_j \xrightarrow{\text{SWIF}} B_\infty \implies \text{FillVol}(\partial B_j) \to \text{FillVol}(\partial B_\infty). \) \(\square \)
Filling Volumes and Balls [Portegies-Sormani]:

\[\text{FillVol}(M^m) = \inf \left\{ M(N^{n+1}) \mid \partial N^{n+1} = M^m \right\} \]

where the inf is over integral current spaces \(N^{n+1} = (X_N, d_N, T_N) \) such that \(\exists \) current preserving isometry \(F : M^m \to \partial N^{n+1} \).

Recall \(\partial N = (\text{set}(\partial T_N), d_N, \partial T_N) \) has the restricted distance \(d_N \) so \(d_N(F(p), F(q)) = d_M(p, q) \forall p, q \in X_M \) and \(F_# \partial T_N = T_M \).

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then for a.e. \(r > 0 \) \((B(p, r), d_M, [[B(p, r)]])) \) is an integral current space and so is \(\partial(B(p, r), d_M, [[B(p, r)]])) = (\partial B(p, r), d_M, [[\partial B(p, r)]]), \) and

\[\text{FillVol}((\partial(B(p, r), d_M, [[B(p, r)]])) \leq M(B(p, r)). \]

Recall: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} M(B(p, r))/r^m > 0. \)

Coro: \(p \in \text{set}(T) \) if \(\lim \inf_{r \to 0} \text{FillVol}(\partial B(p, r))/r^m > 0. \)

This corollary was applied by S-Wenger Matveev-Portegies to prove

Thm: \(M_{GH} = M_{SWIF} \) for \(M_j \) with \(\text{Vol}(M_j) \geq V \) and \(\text{Ricci} \geq H. \)

Pf: Perelman Colding Gv: \(\exists C^m_{H, V} \text{ s.t. } \text{FillVol}(\partial B(p, r)) \geq C^m_{V, H} r^m. \)

combined with Corollary above and Portegies-Sormani (next slide) which says \(B_j \xrightarrow{\text{SWIF}} B_\infty \implies \text{FillVol}(\partial B_j) \to \text{FillVol}(\partial B_\infty). \) □
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: $M_j^m \xrightarrow{\text{SWIF}} M_\infty \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty)$.

Proof:

We need only show that for any fixed $\epsilon > 0$\n\[
\text{FillVol}(\partial M_j^m) \leq d_{\text{SWIF}}(M_j^m, M_j^m) + \text{FillVol}(\partial M_j^m) + \epsilon.
\]

1. By defn:\n\[\exists \varphi_i: X_i \to Z \text{ and } A + \partial B = \varphi_1#T_1 - \varphi_2#T_2 \text{ s.t. } M(A) + M(B) \leq d_{\text{SWIF}}(M_j^m, M_j^m) + \epsilon/2.\]

2. $\partial A = \partial \varphi_1#T_1 - \partial \varphi_2#T_2 - \partial \partial B$.

Let $N_j^m = (\text{set}(A), d_Z, A)$ so $\varphi_i: \partial M_i \to \partial N_j^m \subset Z$.

3. By defn of FillVol:\n\[\exists N_j^m_2 with \partial N_j^m_2 = \partial M_j^m_2 \text{ such that } M(N_j^m_2) \leq \text{FillVol}(\partial M_j^m) + \epsilon/2.\]

4. Glue $N_j^m_1$ to $N_j^m_2$ along $\partial M_j^m_2$ to obtain $N_j^m_1, 2$ s.t. $\partial N_j^m_1, 2 = \partial M_j^m_1$.

\[M(N_j^m_1, 2) \leq M(N_j^m_1) + M(N_j^m_2) \leq d_{\text{SWIF}}(M_j^m, M_j^m) + \text{FillVol}(\partial M_j^m) + \epsilon.\]
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M_j^m \xrightarrow{\text{SWIF}} M_\infty^m \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty^m). \)

Proof: We need only show that for any fixed \(\epsilon > 0 \)

\[
\text{FillVol}(\partial M_1^m) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.
\]
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M^m_j \xrightarrow{\text{SWIF}} M^m_\infty \implies \text{FillVol}(\partial M^m_j) \to \text{FillVol}(\partial M^m_\infty) \).

Proof: We need only show that for any fixed \(\epsilon > 0 \)

\[
\text{FillVol}(\partial M^m_1) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \text{FillVol}(\partial M^m_2) + \epsilon.
\]
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M^m_j \xrightarrow{\text{SWIF}} M^m_\infty \implies \text{FillVol}(\partial M^m_j) \to \text{FillVol}(\partial M^m_\infty) \).

Proof: We need only show that for any fixed \(\epsilon > 0 \)

\[
\text{FillVol}(\partial M^m_1) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \text{FillVol}(\partial M^m_2) + \epsilon.
\]

1. \[\textbf{M}_1 \quad \textbf{B} \quad \textbf{M}_2 \]
2. \[\partial \textbf{M}_1 \quad \textbf{N}_1 \quad \partial \textbf{M}_2 \]
3. \[\partial \textbf{M}_2 \quad \textbf{N}_2 \]
4. \[\partial \textbf{M}_1 \quad \textbf{N}_{1,2} \]
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M^m_j \xrightarrow{\text{SWIF}} M^m_\infty \implies \text{FillVol}(\partial M^m_j) \to \text{FillVol}(\partial M^m_\infty). \)

Proof: We need only show that for any fixed \(\epsilon > 0 \)
\[
\text{FillVol}(\partial M^m_1) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \text{FillVol}(\partial M^m_2) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \to Z \) and \(A + \partial B = \varphi_1\# T_1 - \varphi_2\# T_2 \) s.t. \(M(A) + M(B) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \epsilon/2. \)
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \[M_j^m \xrightarrow{\text{SWIF}} M_\infty^m \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty^m). \]

Proof: We need only show that for any fixed \(\epsilon > 0 \)

\[
\text{FillVol}(\partial M_1^m) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \to Z \) and \(A + \partial B = \varphi_1\# T_1 - \varphi_2\# T_2 \) s.t. \(M(A) + M(B) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \epsilon/2. \)

2. \(\partial A = \partial \varphi_1\# T_1 - \partial \varphi_2\# T_2 - \partial \partial B \)
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M_j^m \xrightarrow{\text{SWIF}} M_\infty \Rightarrow \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty).\)

Proof: We need only show that for any fixed \(\epsilon > 0\)

\[
\text{FillVol}(\partial M_1^m) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \to Z\) and \(A + \partial B = \varphi_1\# T_1 - \varphi_2\# T_2\) s.t. \(M(A) + M(B) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \epsilon/2.\)
2. \(\partial A = \partial \varphi_1\# T_1 - \partial \varphi_2\# T_2 - \partial \partial B = \varphi_1\# \partial T_1 - \varphi_2\# \partial T_2.\)
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M^m_j \xrightarrow{\text{SWIF}} M^m_\infty \implies \text{FillVol}(\partial M^m_j) \to \text{FillVol}(\partial M^m_\infty). \)

Proof: We need only show that for any fixed \(\epsilon > 0 \)

\[
\text{FillVol}(\partial M^m_1) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \text{FillVol}(\partial M^m_2) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \to Z \) and \(A + \partial B = \varphi_1 \# T_1 - \varphi_2 \# T_2 \) s.t.

\[
M(A) + M(B) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \epsilon/2.
\]

2. \(\partial A = \partial \varphi_1 \# T_1 - \partial \varphi_2 \# T_2 - \partial \partial B = \varphi_1 \# \partial T_1 - \varphi_2 \# \partial T_2. \)

Let \(N^m_i = (\text{set}(A), d_Z, A) \) so \(\varphi_i : \partial M_i \to \partial N_1 \subset Z. \)
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M_j^m \xrightarrow{\text{SWIF}} M_\infty^m \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty^m).\)

Proof: We need only show that for any fixed \(\epsilon > 0\)

\[
\text{FillVol}(\partial M_1^m) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \to Z\) and \(A + \partial B = \varphi_1# T_1 - \varphi_2# T_2\) s.t.
 \(M(A) + M(B) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \epsilon/2.\)

2. \(\partial A = \partial \varphi_1# T_1 - \partial \varphi_2# T_2 - \partial \partial B = \varphi_1\partial T_1 - \varphi_2\partial T_2.\)

 Let \(N_1^m = (\text{set}(A), d_Z, A)\) so \(\varphi_i : \partial M_i \to \partial N_1 \subset Z.\)

3. By defn of FillVol: \(\exists N_2^m\) with \(\partial N_2^m = \partial M_2^m\) such that
 \(M(N_2^m) \leq \text{FillVol}(\partial M_2^m) + \epsilon/2.\)
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: \(M_j^m \xrightarrow{\text{SWIF}} M_\infty^m \implies \text{FillVol}(\partial M_j^m) \rightarrow \text{FillVol}(\partial M_\infty^m)\).

Proof: We need only show that for any fixed \(\epsilon > 0\)

\[
\text{FillVol}(\partial M_1^m) \leq d_{SWIF}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.
\]

1. By defn: \(\exists \varphi_i : X_i \rightarrow Z\) and \(A + \partial B = \varphi_1\# T_1 - \varphi_2\# T_2\) s.t. \(M(A) + M(B) \leq d_{SWIF}(M_1^m, M_2^m) + \epsilon/2\).

2. \(\partial A = \partial \varphi_1\# T_1 - \partial \varphi_2\# T_2 - \partial \partial B = \varphi_1\# \partial T_1 - \varphi_2\# \partial T_2\).

 Let \(N_1^m = (\text{set}(A), d_Z, A)\) so \(\varphi_i : \partial M_i \rightarrow \partial N_1 \subset Z\).

3. By defn of FillVol: \(\exists N_2^m\) with \(\partial N_2^m = \partial M_2^m\) such that

 \[
 M(N_2^m) \leq \text{FillVol}(\partial M_2^m) + \epsilon/2.
 \]

4. Glue \(N_1^m\) to \(N_2^m\) along \(\partial M_2^m\) to obtain \(N_{1,2}^m\) s.t. \(\partial N_{1,2}^m = \partial M_1^m\).
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: $M_j^m \xrightarrow{\text{SWIF}} M^m \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M^m)$.

Proof: We need only show that for any fixed $\epsilon > 0$

$$\text{FillVol}(\partial M^m_1) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \text{FillVol}(\partial M^m_2) + \epsilon.$$

1. By defn: $\exists \varphi_i : X_i \to Z$ and $A + \partial B = \varphi_1#T_1 - \varphi_2#T_2$ s.t. $M(A) + M(B) \leq d_{\text{SWIF}}(M^m_1, M^m_2) + \epsilon/2$.

2. $\partial A = \partial \varphi_1#T_1 - \partial \varphi_2#T_2 - \partial \partial B = \varphi_1#\partial T_1 - \varphi_2#\partial T_2$.

Let $N^m_1 = (\text{set}(A), d_Z, A)$ so $\varphi_i : \partial M_i \to \partial N_1 \subset Z$.

3. By defn of FillVol: $\exists N^m_2$ with $\partial N^m_2 = \partial M^m_2$ such that $M(N^m_2) \leq \text{FillVol}(\partial M^m_2) + \epsilon/2$.

4. Glue N^m_1 to N^m_2 along ∂M^m_2 to obtain $N^m_{1,2}$ s.t. $\partial N^m_{1,2} = \partial M^m_1$

$M(N^m_{1,2}) \leq M(N^m_1) + M(N^m_2) \leq$
Filling Volumes and SWIF Limits [Portegies-Sormani]:

Thm: $M_j^m \xrightarrow{\text{SWIF}} M_\infty^m \implies \text{FillVol}(\partial M_j^m) \to \text{FillVol}(\partial M_\infty^m)$.

Proof: We need only show that for any fixed $\epsilon > 0$

$$\text{FillVol}(\partial M_1^m) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \text{FillVol}(\partial M_2^m) + \epsilon.$$

1. By defn: $\exists \varphi_i : X_i \to Z$ and $A + \partial B = \varphi_1 T_1 - \varphi_2 T_2$ s.t. $M(A) + M(B) \leq d_{\text{SWIF}}(M_1^m, M_2^m) + \epsilon/2$.

2. $\partial A = \partial \varphi_1 T_1 - \partial \varphi_2 T_2 - \partial \partial B = \varphi_1 \partial T_1 - \varphi_2 \partial T_2$.

Let $N_1^m = (\text{set}(A), d_Z, A)$ so $\varphi_i : \partial M_i \to \partial N_1 \subset Z$.

3. By defn of FillVol: $\exists N_2^m$ with $\partial N_2^m = \partial M_2^m$ such that

$$M(N_2^m) \leq \text{FillVol}(\partial M_2^m) + \epsilon/2.$$

4. Glue N_1^m to N_2^m along ∂M_2^m to obtain $N_{1,2}^m$ s.t. $\partial N_{1,2}^m = \partial M_1^m$

$$M(N_{1,2}) \leq M(N_1^m) + M(N_2^m) \leq d_{\text{SWIF}}(M_1, M_2) + \text{FillVol}(\partial M_2^m) + \epsilon.$$
Intrinsic Flat and Gromov-Hausdorff Convergence

Christina Sormani

CUNY GC and Lehman College

Lectures IV: Proving Intrinsic Flat Convergence
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $d_F(M_j, M_\infty) = d_{SWIF}(M_j, M_\infty) \to 0$.

Defn: $M_j \xrightarrow{F} M_\infty$ if $\text{Vol}(M_j) \to \text{Vol}(M_\infty)$.
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $\text{Vol}(M_j) \to \text{Vol}(M_\infty)$.
Volume Preserving Intrinsic Flat \mathcal{VF} Convergence

Defn: $M_j \xrightarrow{\mathcal{VF}} M_\infty$ if $M_j \xrightarrow{\mathcal{F}} M_\infty$ and $\text{Vol}(M_j) \to \text{Vol}(M_\infty)$.

Defn: $M_j \xrightarrow{\mathcal{F}} M_\infty$ if $d_{\mathcal{F}}(M_j, M_\infty) = d_{\text{SWIF}}(M_j, M_\infty) \to 0$:

Sormani-Wenger: Intrinsic Flat Distance

The intrinsic flat distance between oriented manifolds M_i^m is:

$$d_{\text{SWIF}}(M_1^m, M_2^m) = \inf \left\{ d_F^Z (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]]) \mid \varphi_i : M_i^m \to Z \right\}$$

where the infimum is taken over all complete metric spaces, Z, and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_F^Z (\varphi_1\#[[M_1^m]], \varphi_2\#[[M_2^m]])$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \text{M}_{\text{area}}(A) + \text{M}_{\text{vol}}(B) : A + \partial B = \varphi_1\#[[M_1^m]] - \varphi_2\#[[M_2^m]] \right\}$$
Suppose \((M_1, g_1)\) and \((M_2, g_2)\) are oriented precompact Riemannian manifolds with diffeomorphic subregions \(W_i \subset M_i\). Identifying \(W_1 = W_2 = W\) assume that on \(W\) we have

\[g_1 \leq (1 + \varepsilon)^2 g_2 \text{ and } g_2 \leq (1 + \varepsilon)^2 g_1.\]

Taking the extrinsic diameters,

\[\text{diam}(M_i) \leq D\]

we define a hemispherical width,

\[a > \frac{\arccos(1 + \varepsilon)^{-1}}{\pi} D.\]

to find dist pres maps

\[g \text{ on } \omega \times [0, a]\]

is

\[g = dr^2 + f^2(r) g_i;\]

\[f(r) = \max \{ \cos(r), \cos(a-r) \}^3\]
Lakzian-Sormani: Estimating d_{SWIF}

Lakzian-Sormani: Suppose (M_1, g_1) and (M_2, g_2) are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_i \subset M_i$. Identifying $W_1 = W_2 = W$ assume that on W we have

$$g_1 \leq (1 + \varepsilon)^2 g_2 \text{ and } g_2 \leq (1 + \varepsilon)^2 g_1.$$

Taking the extrinsic diameters,

$$\text{diam}(M_i) \leq D$$

we define a hemispherical width,

$$a > \frac{\arccos(1 + \varepsilon)^{-1}}{\pi} D.$$

Taking the difference in distances with respect to the outside manifolds, we set

$$\lambda = \sup_{x,y \in W} |d_{M_1}(x, y) - d_{M_2}(x, y)| \leq 2D,$$

and we define the height,

$$\overline{h} = \max\{ \sqrt{2\lambda D}, D \sqrt{\varepsilon^2 + 2\varepsilon} \}.$$

Then taking $Z = M_1 \sqcup W_1 \times [0, h] \sqcup \omega \times [0, \sigma] \sqcup \omega_2 \times [0, h] \sqcup M_2$

$$d_{\varphi}(M_1, M_2) \leq (2\overline{h} + a) \left(\text{Vol}_m(W_1) + \text{Vol}_m(W_2) + \text{Vol}_{m-1}(\partial W_1) + \text{Vol}_{m-1}(\partial W_2) \right) + \text{Vol}_m(M_1 \setminus W_1) + \text{Vol}_m(M_2 \setminus W_2),$$
Lakzian-Sormani: Estimating d_{SWIF}

Lakzian-Sormani: Suppose (M_1, g_1) and (M_2, g_2) are oriented precompact Riemannian manifolds with diffeomorphic subregions $W_i \subset M_i$. Identifying $W_1 = W_2 = W$ assume that on W we have

$$g_1 \leq (1 + \varepsilon)^2 g_2 \text{ and } g_2 \leq (1 + \varepsilon)^2 g_1.$$

Taking the extrinsic diameters,

$$\text{diam}(M_i) \leq D$$

we define a hemispherical width,

$$a > \frac{\arccos(1 + \varepsilon)^{-1}}{\pi} D.$$

Taking the difference in distances with respect to the outside manifolds, we set

$$\lambda = \sup_{x,y \in W} |d_M(x,y) - d_{M_2}(x,y)| \leq 2D,$$

and we define the height,

$$\overline{h} = \max\{\sqrt{2\lambda}D, D \sqrt{\varepsilon^2 + 2\varepsilon}\}.$$

Then taking $Z = M_1 \cup W_1 \cup \partial W_1 \cup \partial W_2$, we have

$$d_{\mathcal{S}}(M_1, M_2) \leq (2\overline{h} + a) \left(\text{Vol}_m(W_1) + \text{Vol}_m(W_2) + \text{Vol}_{m-1}(\partial W_1) + \text{Vol}_{m-1}(\partial W_2) \right)$$

$$+ \text{Vol}_m(M_1 \setminus W_1) + \text{Vol}_m(M_2 \setminus W_2).$$
Defn: Volume Above Distance Below Conv: $M_j \xrightarrow{\text{VADB}} M_\infty \implies M_j \xrightarrow{\mathcal{V}_F} M_\infty$.

If $Vol_j(M_j) \to Vol_\infty(M_\infty)$ and $\exists D > 0$ s.t. $\text{Diam}(M_j) \leq D$ and $\exists C^1$ diffeomorphism $\psi_j : M_\infty \to M_j$ such that

$$d_j(\psi_j(p), \psi_j(q)) \geq d_\infty(p, q) \ \forall p, q \in M_\infty.$$
Allen-Perales-Sormani VADB

Allen-Perales-Sormani: [arXiv:2003.01172]

\[M_j \xrightarrow{\text{VADB}} M_{\infty} \implies M_j \xrightarrow{\nu F} M_{\infty}. \]

Defn: *Volume Above Distance Below Conv:* \(M_j \xrightarrow{\text{VADB}} M_{\infty} \) if \(\text{Vol}_j(M_j) \to \text{Vol}_\infty(M_{\infty}) \) and \(\exists D > 0 \) s.t. \(\text{Diam}(M_j) \leq D \) and \(\exists C^1 \) diffeomorphism \(\psi_j : M_{\infty} \to M_j \) such that

\[d_j(\psi_j(p), \psi_j(q)) \geq d_\infty(p, q) \quad \forall p, q \in M_{\infty}. \]

An earlier theorem that inspired us:

Huang-Lee-Sormani: Given \((M, d_0)\) Riemannian without boundary and fix \(\lambda > 0\), suppose that \(d_j\) are length metrics on \(M\) such that

\[\lambda \geq \frac{d_j(p, q)}{d_0(p, q)} \geq \frac{1}{\lambda}. \]

Then there exists a subsequence, also denoted \(d_j\), and a length metric \(d_\infty\) such that \(d_j\) converges uniformly to \(d_\infty\):

\[\varepsilon_j = \sup \{|d_j(p, q) - d_\infty(p, q)| : p, q \in X\} \to 0. \]

and \(M_j\) converges in the intrinsic flat and Gromov-Hausdorff sense to \(M_{\infty}\):

\[M_j \xrightarrow{F} M_{\infty} \quad \text{and} \quad M_j \xrightarrow{GH} M_{\infty} \]

where \(M_j = (M, d_j)\) and \(M_{\infty} = (M, d_\infty)\).
Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

\[d_j(x, y) \geq d_0(F_j(x), F_j(y)) \quad \forall x, y \in M_j. \]

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

\[d_j(x, y) \leq d_0(F_j(x), F_j(y)) + 2\delta_j \quad \forall x, y \in W_j \]

with

\[\text{Vol}_j(M_j \setminus W_j) \leq V_j \]

and

\[h_j \geq \sqrt{2\delta_j D + \delta_j^2} \]

then

\[d_F(M_0, M_j) \leq 2V_j + h_j V. \]
Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

\[(120) \quad d_j(x, y) \geq d_0(F_j(x), F_j(y)) \quad \forall x, y \in M_j.\]

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

\[(121) \quad d_j(x, y) \leq d_0(F_j(x), F_j(y)) + 2\delta_j \quad \forall x, y \in W_j\]

with

\[(122) \quad \text{Vol}_j(M_j \setminus W_j) \leq V_j\]

and

\[(123) \quad h_j \geq \sqrt{2\delta_j D + \delta_j^2}\]

then

\[(124) \quad d_F(M_0, M_j) \leq 2V_j + h_j V.\]
Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

\begin{equation}
\forall x, y \in M_j.
\end{equation}

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

\begin{equation}
\forall x, y \in W_j
\end{equation}

with

\begin{equation}
\text{Vol}_j(M_j \setminus W_j) \leq V_j
\end{equation}

and

\begin{equation}
h_j \geq \sqrt{2\delta_j D + \delta_j^2}
\end{equation}

then

\begin{equation}
d_F(M_0, M_j) \leq 2V_j + h_j V.
\end{equation}

Z is M_j glued along W_j to $M_j \times [0, h]$ glued along $F_j(W_j)$ to M_0.

\[Z = \text{M}_j \times [0, h] \]
Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

\[g_j(v, v) \geq g_0(v, v) \quad \forall v \in T_p M \]

and

\[\text{Vol}_j(M) \to \text{Vol}_0(M) \]

then there exists a subsequence such that

\[\lim_{j \to \infty} d_j(p, q) = d_0(p, q) \] pointwise a.e. $(p, q) \in M \times M$.

Allen-Sormani VADB to ptwise a.e. on \(M \times M \)

Allen-Sormani: If \((M,g_j)\) are compact continuous Riemannian manifolds without boundary and \((M,g_0)\) is a smooth Riemannian manifold such that

\[(85)\]
\[g_j(v,v) \geq g_0(v,v) \quad \forall v \in T_p M\]

and

\[(86)\]
\[\text{Vol}_j(M) \to \text{Vol}_0(M)\]

then there exists a subsequence such that

\[(87)\]
\[\lim_{j \to \infty} d_j(p,q) = d_0(p,q) \text{ pointwise a.e. } (p,q) \in M \times M.\]

Figure 2. A tube \(\mathcal{T} \) foliated by \(g_0 \)-geodesics, \(\gamma \), with \(L_j(\gamma) \geq L_0(\gamma) \) has \(\text{Vol}_j(\mathcal{T}) \to \text{Vol}_0(\mathcal{T}) \) so \(L_j(\gamma) \to L_0(\gamma) \) for almost every \(\gamma \) but not for \(\gamma \) ending at a tip.
Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that
\[g_j(v, v) \geq g_0(v, v) \quad \forall v \in T_p M \]
and
\[\operatorname{Vol}_j(M) \to \operatorname{Vol}_0(M) \]
then there exists a subsequence such that
\[\lim_{j \to \infty} d_j(p, q) = d_0(p, q) \text{ pointwise a.e. } (p, q) \in M \times M. \]

Figure 2. A tube \mathcal{T} foliated by g_0-geodesics, γ, with $L_j(\gamma) \geq L_0(\gamma)$ has $\operatorname{Vol}_j(\mathcal{T}) \to \operatorname{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$?
Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

\[(85) \quad g_j(v, v) \geq g_0(v, v) \quad \forall v \in T_pM\]

and

\[(86) \quad \text{Vol}_j(M) \to \text{Vol}_0(M)\]

then there exists a subsequence such that

\[(87) \quad \lim_{j \to \infty} d_j(p, q) = d_0(p, q) \text{ pointwise a.e. } (p, q) \in M \times M.\]

Figure 2. A tube T foliated by g_0-geodesics, γ, with $L_j(\gamma) \geq L_0(\gamma)$ has $\text{Vol}_j(T) \to \text{Vol}_0(T)$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$? Egoroff’s Theorem?
Allen-Sormani VADB to ptwise a.e. on $M \times M$

Allen-Sormani: If (M, g_j) are compact continuous Riemannian manifolds without boundary and (M, g_0) is a smooth Riemannian manifold such that

\begin{equation}
 g_j(v, v) \geq g_0(v, v) \quad \forall v \in T_p M
\end{equation}

and

\begin{equation}
 \text{Vol}_j(M) \to \text{Vol}_0(M)
\end{equation}

then there exists a subsequence such that

\begin{equation}
 \lim_{j \to \infty} d_j(p, q) = d_0(p, q) \text{ pointwise a.e. } (p, q) \in M \times M.
\end{equation}

Figure 2. A tube \mathcal{T} foliated by g_0-geodesics, γ, with $L_j(\gamma) \geq L_0(\gamma)$ has $\text{Vol}_j(\mathcal{T}) \to \text{Vol}_0(\mathcal{T})$ so $L_j(\gamma) \to L_0(\gamma)$ for almost every γ but not for γ ending at a tip.

How to find a $W \subset M$ controlling $d(p, q)$ for all $p, q \in W$? Egoroff’s Theorem? But Egoroff’s Theorem only gives a set $S \in M \times M$ controlling $d(p, q)$ uniformly $\forall (p, q) \in S$...
Now we apply Egoroff’s theorem to obtain uniform convergence on a set of almost full measure.

Proposition 7. Under the hypotheses of Theorem 4.1, for every $\varepsilon > 0$ there exists a $d\text{vol}_{\mathcal{g}_0} \times d\text{vol}_{\mathcal{g}_0}$ measurable set, $S_{\varepsilon} \subset M \times M$, such that

\[
\sup\{|d_j(p,q) - d_0(p,q)| : (p,q) \in S_{\varepsilon}\} = \delta_{\varepsilon,j} \to 0,
\]

\[
\text{Vol}_{0 \times 0}(S_{\varepsilon}) > (1 - \varepsilon) \text{Vol}_{0 \times 0}(M \times M).
\]

and

\[
(p,q) \in S_{\varepsilon} \iff (q,p) \in S_{\varepsilon}.
\]
Now we apply Egoroff’s theorem to obtain uniform convergence on a set of almost full measure.

Proposition. Under the hypotheses of Theorem 4.1, for every $\varepsilon > 0$ there exists a $dvol_{g_0} \times dvol_{g_0}$ measurable set, $S_\varepsilon \subset M \times M$, such that

$$
\sup \{ |d_j(p,q) - d_0(p,q)| : (p,q) \in S_\varepsilon \} = \delta_{\varepsilon,j} \to 0,
$$

(185)

$$
Vol_{0\times 0}(S_\varepsilon) > (1 - \varepsilon) Vol_{0\times 0}(M \times M).
$$

(186)

and

$$
S_{p,\varepsilon} = \{ q \in M : (p,q) \in S_\varepsilon \},
$$

are $dvol_{g_0}$ measurable and satisfy

$$
(1 - \varepsilon) Vol_0(M) < \int_{p \in M} \frac{Vol_0(S_{p,\varepsilon})}{Vol_0(M)} dvol_{g_0}.
$$
Now we apply Egoroff’s theorem to obtain uniform convergence on a set of almost full measure.

Proposition. Under the hypotheses of Theorem 4.1, for every \(\varepsilon > 0 \) there exists a \(\text{dvol}_{g_0} \times \text{dvol}_{g_0} \) measurable set, \(S_\varepsilon \subset M \times M \), such that
\[
\sup \{|d_j(p,q) - d_0(p,q)| : (p,q) \in S_\varepsilon \} = \delta_{\varepsilon,j} \to 0,
\]
and
\[
\text{Vol}_{0 \times 0}(S_\varepsilon) > (1 - \varepsilon) \text{Vol}_{0 \times 0}(M \times M).
\]

\[
S_{p,\varepsilon} = \{q \in M : (p,q) \in S_\varepsilon\},
\]
are \(\text{dvol}_{g_0} \) measurable and satisfy
\[
(1 - \varepsilon) \text{Vol}_0(M) < \int_{p \in M} \frac{\text{Vol}_0(S_{p,\varepsilon})}{\text{Vol}_0(M)} \text{dvol}_{g_0}.
\]

Lemma 4.5. For \(W_{K,\varepsilon} = \{p : \text{Vol}_0(S_{p,\varepsilon}) > (1 - K\varepsilon) \text{Vol}_0(M)\} \)
\[
\text{Vol}_0(W_{K,\varepsilon}) > \frac{\kappa - 1}{\kappa} \text{Vol}_0(M).
\]

and
\[
|d_j(p,q) - d_0(p,q)| < \delta_{\varepsilon,j} \quad \forall p, q \in W_{K,\varepsilon}
\]
Allen-Perales-Sormani VADB to \mathcal{VF} is Proven

Lemma 4.5. For $W_{\kappa\varepsilon} = \{p : \text{Vol}_0(S_{p,\varepsilon}) > (1-\kappa\varepsilon)\text{Vol}_0(M)\}$

\[
\text{Vol}_0(W_{\kappa\varepsilon}) > \frac{\kappa - 1}{\kappa} \text{Vol}_0(M).
\]

and $|d_j(p, q) - d_0(p, q)| < \delta_{\varepsilon,j} \quad \forall p, q \in W_{\kappa,\varepsilon}$

combined with our estimate on SWIF:

Allen-Perales-Sormani Let M be an oriented, connected and closed manifold, $M_j = (M, g_j)$ and $M_0 = (M, g_0)$ be Riemannian manifolds with $\text{Diam}(M_j) \leq D$, $\text{Vol}_j(M_j) \leq V$ and $F_j : M_j \to M_0$ a C^1 diffeomorphism and distance non-increasing map:

(120) \[d_j(x, y) \geq d_0(F_j(x), F_j(y)) \quad \forall x, y \in M_j.\]

Let $W_j \subset M_j$ be a measurable set and assume that there exists a $\delta_j > 0$ so that

(121) \[d_j(x, y) \leq d_0(F_j(x), F_j(y)) + 2\delta_j \quad \forall x, y \in W_j\]

with

(122) \[\text{Vol}_j(M_j \setminus W_j) \leq V_j\]

and

(123) \[h_j \geq \sqrt{2\delta_j D + \delta_j^2}\]

then

(124) \[d_x(M_0, M_j) \leq 2V_j + h_j V.\]

completes the proof of $M_j \xrightarrow{\text{VADB}} M_\infty \implies M_j \xrightarrow{\mathcal{VF}} M_\infty$. □
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000):
an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn:
an integer rectifiable current, T, has countably many pairwise disjoint biLip charts $\phi_i: A_i \to \phi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \phi_i) \, d(\pi_1 \circ \phi_i) \wedge \cdots \wedge d(\pi_m \circ \phi_i)$$

with mass $M(T) = ||T||(Z)$ where $||T|| = \lambda_h(T)$ and

$set(T) = \{ z \in Z | \lim \inf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}$.

Key Idea:
Integral currents generalize oriented submanifolds in Z.

Key New Idea:
generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn:
An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $set(T) = X$.

Furthermore: $M(M) = M(T)$ and $\partial M = (set(\partial T), d, \partial T)$.

Thus X is countably H_m-rectifiable: it has countably many pairwise disjoint Lip charts $\phi_i: A_i \to X$ s.t.

$H_m(X \setminus \bigcup_{i=1}^{\infty} \phi_i(A_i)) = 0$.

SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $\mathbf{M}(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (\mathcal{H}_m \lfloor \text{set } T)$ and

$$\text{set}(T) = \{z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}.$$
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) \, d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (\mathcal{H}_m \sqcap \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:

Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \rightarrow \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, \ldots, \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (H_m \sqsubseteq \text{set } T)$ and

$$\text{set}(T) = \{z \in Z \mid \liminf_{r \to 0} \frac{\|T\|(B(z, r))}{r^m} > 0\}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta(H_m \downarrow \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. $\text{set}(T) = X$.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents: **Ambrosio-Kirchheim (2000):** an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \| T \|(Z)$ where $\| T \| = \lambda \theta (\mathcal{H}_m \sqsubset \text{set } T)$ and

$$\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. set$(T) = X$.

Furthermore: $M(M) = M(T)$ and $\partial M = (\text{set}(\partial T), d, \partial T)$.
SWIF limits are Integral Current Spaces

Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an integer rectifiable current s.t. ∂T is also integer rectifiable.

Defn: an integer rectifiable current, T, has cntbly many pairwise disjoint biLip charts $\varphi_i : A_i \to \varphi_i(A_i) \subset Z$ and weights $a_i \in \mathbb{Z}$ s.t.

$$T(f, \pi_1, ..., \pi_m) = \sum_{i=1}^{\infty} a_i \int_{A_i} (f \circ \varphi) d(\pi_1 \circ \varphi) \wedge \cdots \wedge d(\pi_m \circ \varphi)$$

with mass $M(T) = \|T\|(Z)$ where $\|T\| = \lambda \theta (H_m \perp \text{set} T)$ and

$$\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}.$$

Key Idea: Integral currents generalize oriented submanifolds in Z.

Key New Idea: generalize oriented Riemannian Manifolds.

Sormani-Wenger Defn: An integral current space $M = (X, d, T)$ is a metric space (X, d) and integral current T s.t. set$(T) = X$.

Furthermore: $M(M) = M(T)$ and $\partial M = (\text{set}(\partial T), d, \partial T)$.

Thus X is cntbly H^m rectifiable: it has cntbly many pairwise disjoint Lip charts $\varphi_i : A_i \to X$ s.t. $H^m(X \setminus \bigcup_{i=1}^{\infty} \varphi_i(A_i)) = 0$.
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[d_M(p, q) = \inf \{ L_g(C) : C: [0, 1] \to M, C(0) = p, C(1) = q \} \]

where

\[L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} ds \]

\[\text{Vol}(U) = H_m(U) \]

is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[\text{set}(T) = \{ z \in Z | \lim \inf r \to 0 ||T||(B(z, r))/r^m > 0 \} \]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta: M \to \mathbb{Z}\).

The mass \(M(U) = ||T||(U)\) has \(||T|| = \theta \lambda H_m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d, \partial T)\).

A compact oriented manifold \((M^m, g)\) is an integral current space \((M, d_M, [\cdot])\) with weight \(\theta = 1\) and

\[M(U) = \text{Vol}(U) = H_m(U) \]

Its boundary \((\partial M, d_M, [\cdot])\) has the restricted distance \(d_M\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \; C(0) = p, \; C(1) = q \} \]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds \)

\(\text{Vol}(U) = \mathcal{H}^m(U) \) is the Hausdorff measure.
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : \ C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[
Vol(U) = \mathcal{H}^m(U) \text{ is the Hausdorff measure.}
\]

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. set\((T) = X\) where

\[
\text{set}(T) = \{ z \in Z | \lim \inf_{r \to 0} \|T\|(B(z, r))/r^m > 0 \}
\]

So it has a countable collection of biLipschitz charts
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}
\]
where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)
\[
\text{Vol}(U) = \mathcal{H}^m(U) \text{ is the Hausdorff measure.}
\]
An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where
\[
\text{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}
\]
So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}
\]
where
\[
L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds
\]

\[
Vol(U) = \mathcal{H}^m(U)
\]
is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where
\[
\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}
\]
So it has a countable collection of biLipschitz charts
that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)
The mass \(M(U) = ||T||(U)\) has \(||T|| = \theta \lambda \mathcal{H}^m\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \; C(0) = p, \; C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{{1/2}} \, ds\)

\[
Vol(U) = \mathcal{H}^m(U)
\]

is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \frac{\| T \|(B(z, r))}{r^m} > 0 \}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)

The mass \(M(U) = \| T \|(U)\) has \(\| T \| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf\{L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q\}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[Vol(U) = \mathcal{H}^m(U)\] is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where
\[
\text{set}(T) = \{z \in Z | \liminf_{r \to 0} \|T\|(B(z, r))/r^m > 0\}
\]

So it has a countable collection of biLipschitz charts

that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)

The mass \(M(U) = \|T\|(U)\) has \(\|T\| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d, \partial T)\).
An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts
\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, C(0) = p, C(1) = q \}
\]
where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)
\[
\operatorname{Vol}(U) = \mathcal{H}^m(U)
\]
is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\operatorname{set}(T) = X\) where
\[
\operatorname{set}(T) = \{ z \in Z \mid \liminf_{r \to 0} ||T||((B(z, r))/r^m > 0 \}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\).

The mass \(\mu(U) = ||T||(U)\) has \(||T|| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\operatorname{set}(\partial T), d, \partial T)\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \to M, \ C(0) = p, \ C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[
\text{Vol}(U) = \mathcal{H}^m(U)
\]

is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \{ z \in Z | \lim \inf_{r \to 0} ||T||(B(z, r))/r^m > 0 \}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \to \mathbb{Z}\)

The mass \(M(U) = ||T||(U)\) has \(||T|| = \theta \chi \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d, \partial T)\).

A compact oriented manifold \((M^m, g)\) is an integral current space \((M, d_M, [[M]])\) with weight \(\theta = 1\) and \(M(U) = \text{Vol}(U) = \mathcal{H}^m(U)\).
Oriented Riemannian Manifolds and Integral Current Spaces

An oriented Riemannian manifold \((M^m, g)\) is a metric space \((M, d_M)\) with a smooth collection of charts

\[
d_M(p, q) = \inf \{ L_g(C) : C : [0, 1] \rightarrow M, \ C(0) = p, \ C(1) = q \}
\]

where \(L_g(C) = \int_0^1 g(C'(s), C'(s))^{1/2} \, ds\)

\[
Vol(U) = \mathcal{H}^m(U)
\]

is the Hausdorff measure.

An integral current space \(M = (X, d, T)\) is a metric space \((X, d)\) and integral current \(T\) s.t. \(\text{set}(T) = X\) where

\[
\text{set}(T) = \{ z \in Z | \liminf_{r \to 0} \| T \|(B(z, r))/r^m > 0 \}
\]

So it has a countable collection of biLipschitz charts that are oriented and weighted by \(\theta : M \rightarrow \mathbb{Z}\)

The mass \(M(U) = \| T \|(U)\) has \(\| T \| = \theta \lambda \mathcal{H}^m\).

It might not be connected and might not have any geodesics.

Its boundary is \(\partial M = (\text{set}(\partial T), d, \partial T)\).

A compact oriented manifold \((M^m, g)\) is an integral current space \((M, d_M, [[M]])\) with weight \(\theta = 1\) and \(M(U) = \text{Vol}(U) = \mathcal{H}^m(U)\).

Its boundary \((\partial M, d_M, [[\partial M]])\) has the restricted distance \(d_M\).
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces \(M_i^m = (X_i, d_i, T_i) \) is:

\[
d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ \bar{d}_F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\}
\]

where \(\varphi_#T(f, \pi_1, ..., \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, ..., \pi_m \circ \varphi) \),
Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces $M_i^m = (X_i, d_i, T_i)$ is:

$$d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F (\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M_i^m \to Z \right\}$$

where $\varphi\# T(f, \pi_1, \ldots, \pi_m) = T(f \circ \varphi, \pi_1 \circ \varphi, \ldots, \pi_m \circ \varphi)$, and

where the infimum is taken over all complete metric spaces, Z,

and over all distance preserving maps $\varphi_i : M_i^m \to Z$.

Here: $d_Z^F (\varphi_1\# T_1, \varphi_2\# T_2)$ is the Federer-Fleming Flat dist

$$= \inf \left\{ \begin{array}{c} \text{M (A)} + \text{M (B)} : \text{A} + \partial \text{B} = \varphi_1\# T_1 - \varphi_2\# T_2 \end{array} \right\}$$

$$= \inf \left\{ \begin{array}{c} \text{M (A)} + \text{M (B)} : \text{A} + \partial \text{B} = \varphi_1\# T_1 - \varphi_2\# T_2 \end{array} \right\}$$
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_F^Z(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose

\[Z' = \text{set}(A) \cup \text{set}(B) \]

which is separable and rectifiable.
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F(\varphi_1\#T_1, \varphi_2\#T_2) \mid \varphi_i : M^m_i \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M^m_i \to Z \).

Thm: The infimum is achieved, so we can choose \(Z' = \text{set}(A) \cup \text{set}(B) \) which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F(\varphi_1 # T_1, \varphi_2 # T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M_i^m \to Z \).

Thm: The infimum is achieved, so we can choose

\[Z' = \text{set}(A) \cup \text{set}(B) \]

which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)

\[\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \]

s.t. \(d_Z^F(\varphi_j # T_j, \varphi_0 # T_0) \to 0 \) and \(\varphi_j # T_j(\omega) \to \varphi_0 # T_0(\omega) \).
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ d^Z_F(\varphi_1\# T_1, \varphi_2\# T_2) \mid \varphi_i : M^m_i \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M^m_i \to Z \).

Thm: The infimum is achieved, so we can choose

\[Z' = \text{set}(A) \cup \text{set}(B) \]

which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \overset{\text{SWIF}}{\longrightarrow} M_0 = (X_0, d_0, T_0) \)

\(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \)

s.t. \(d^Z_F(\varphi_j\# T_j, \varphi_0\# T_0) \to 0 \) and \(\varphi_j\# T_j(\omega) \to \varphi_0\# T_0(\omega) \).

Thus by Ambrosio-Kirchheim Theory:
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M_1^m, M_2^m) = \inf \left\{ d_Z^F(\varphi_1#T_1, \varphi_2#T_2) \mid \varphi_i : M_i^m \to Z \right\} \]

where the inf over complete Z and dist. pres. $\varphi_i : M_i^m \to Z$.

Thm: The infimum is achieved, so we can choose $Z' = \text{set}(A) \cup \text{set}(B)$ which is separable and rectifiable.

Thm: If $M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0)$

\[\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \]

s.t. $d_Z^F(\varphi_j#T_j, \varphi_0#T_0) \to 0$ and $\varphi_j#T_j(\omega) \to \varphi_0#T_0(\omega)$.

Thus by Ambrosio-Kirchheim Theory:

\[M_j \xrightarrow{SWIF} M_\infty \implies \partial M_j \xrightarrow{SWIF} \partial M_\infty \]
Implications of SWIF Convergence [SW-JDG]

Defn: For any pair of integral current spaces,

\[d_{SWIF}(M^m_1, M^m_2) = \inf \left\{ \frac{d}{dF}(\varphi_1\#T_1, \varphi_2\#T_2) \mid \varphi_i : M^m_i \to Z \right\} \]

where the inf over complete \(Z \) and dist. pres. \(\varphi_i : M^m_i \to Z \).

Thm: The infimum is achieved, so we can choose
\[Z' = \text{set}(A) \cup \text{set}(B) \]
which is separable and rectifiable.

Thm: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (X_0, d_0, T_0) \)
\[\exists \text{ complete separable } Z \text{ and dist. pres. } \varphi_j : X_j \to Z \]
s.t. \(\frac{d}{dF}(\varphi_j\#T_j, \varphi_0\#T_0) \to 0 \) and \(\varphi_j\#T_j(\omega) \to \varphi_0\#T_0(\omega) \).

Thus by Ambrosio-Kirchheim Theory:

\[M_j \xrightarrow{SWIF} M_\infty \implies \partial M_j \xrightarrow{SWIF} \partial M_\infty \]

\[M_j \xrightarrow{SWIF} M_\infty \implies \lim\inf_{j \to \infty} M(M_j) \geq M(M_\infty) \]

Thm [Sor-ArzAsc]: For any \(p \in M_\infty \) there exists \(p_j \in M_j \) s.t.
\[d_Z(\varphi_j(p_j), \varphi_\infty(p)) \to 0. \]
Theorem [Sor-ArzAsc] Suppose $M_i = (X_i, d_i, T_i)$ are integral current spaces for $i \in \{1, 2, ..., \infty\}$ and $M_i \xrightarrow{\mathcal{F}} M_\infty$ and $F_i : X_i \to W$ are Lipschitz maps into a compact metric space W with

\begin{equation}
\text{Lip}(F_i) \leq K,
\end{equation}

then a subsequence converges to a Lipschitz map $F_\infty : X_\infty \to W$ with

\begin{equation}
\text{Lip}(F_\infty) \leq K.
\end{equation}

More specifically, there exists isometric embeddings of the subsequence, $\varphi_i : X_i \to Z$, such that $d_F^Z(\varphi_i\#T_i, \varphi_\infty\#T_\infty) \to 0$ and for any sequence $p_i \in X_i$ converging to $p \in X_\infty$,

\begin{equation}
\text{d}_Z(\varphi_i(p_i), \varphi_\infty(p)) \to 0,
\end{equation}

one has converging images,

\begin{equation}
\text{d}_W(F_i(p_i), F_\infty(p)) \to 0.
\end{equation}
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0)$ then there exist complete separable Z and dist. pres. $\phi_j : X_j \to Z$ such that $d_Z(\phi_j(T_j), \phi_0(T_0)) \to 0$ and $\phi_j(T_j)(\omega) \to \phi_0(T_0)(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{SWIF} M_0$, then there exist $p_j \in M_j$ such that $d_Z(\phi_j(p_j), \phi_0(p_0)) \to 0$.

Furthermore:
- For a.e. $r > 0$ there exists a subsequence j_k such that $(B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]]) \xrightarrow{SWIF} (B(p_0, r), d_M, [[B(p_0, r)])$.

Coro: $\liminf_{j \to \infty} M(B(p_j, r)) \geq M(B(p_0, r))$.

Coro: $\partial B(p_j, r) \to \partial B(p_0, r)$.

Coro: $\text{FillVol}(\partial B(p_j, r)) \to \text{FillVol}(\partial B(p_0, r))$.

Coro: $\text{Diam}(M_0) \leq \liminf_{j \to \infty} \text{Diam}(M_j)$.

Thm: If $M_m j \xrightarrow{SWIF} M \neq 0$ then there exists $N_j \subset M_j$ such that $N_j \xrightarrow{GH} M$ SWIF and $\liminf_{j \to \infty} M(N_j) \geq M(M_{SWIF})$.

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$

\exists complete separable Z and dist. pres. $\varphi_j : X_j \rightarrow Z$ such that

$d^Z_F(\varphi_j\#T_j, \varphi_0\#T_0) \rightarrow 0$ and $\varphi_j\#T_j(\omega) \rightarrow \varphi_0\#T_0(\omega)$.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0)$

\exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that

$d^Z_F(\varphi_j\# T_j, \varphi_0\# T_0) \to 0$ and $\varphi_j\# T_j(\omega) \to \varphi_0\# T_0(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{SWIF} M_0$, then
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then
$(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$

exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that

$d^Z_F(\varphi_j \# T_j, \varphi_0 \# T_0) \to 0$ and $\varphi_j \# T_j(\omega) \to \varphi_0 \# T_0(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then

$\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0$.

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]])$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$

exists complete separable Z and dist. pres. $\varphi_j : X_j \to Z$ such that

$d_Z^F(\varphi_j# T_j, \varphi_0# T_0) \to 0$ and $\varphi_j# T_j(\omega) \to \varphi_0# T_0(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then

exists $p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0$.

Furthermore: For a.e. $r > 0$ exists subsequence j_k such that

$(B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]]) \xrightarrow{\text{SWIF}} (B(p_0, r), d_M, [[B(p_0, r)]])$.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$

\exists complete separable Z and dist. pres. $\varphi_j : X_j \rightarrow Z$ such that

$$d_Z(\varphi_j#T_j, \varphi_0#T_0) \rightarrow 0 \text{ and } \varphi_j#T_j(\omega) \rightarrow \varphi_0#T_0(\omega).$$

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then

$\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \rightarrow 0$.

Furthermore: For a.e. $r > 0 \exists$ subsequence j_k such that

$(B(p_{jk}, r), d_M, [[B(p_{jk}, r)]])) \xrightarrow{\text{SWIF}} (B(p_0, r), d_M, [[B(p_0, r)]]))$.

Coro: $\lim \inf_{j \rightarrow \infty} M(B(p_j, r)) \geq M(B(p_0, r))$.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{\text{SWIF}} M_0 = (x_0, d_0, T_0)$

\exists complete separable Z and dist. pres. $\varphi_j : X_j \rightarrow Z$ such that

$d_Z^F(\varphi_j#T_j, \varphi_0#T_0) \rightarrow 0$ and $\varphi_j#T_j(\omega) \rightarrow \varphi_0#T_0(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{\text{SWIF}} M_0$, then

$\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \rightarrow 0$.

Furthermore: For a.e. $r > 0$ \exists subsequence j_k such that

$(B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]])) \xrightarrow{\text{SWIF}} (B(p_0, r), d_M, [[B(p_0, r)]]))$.

Coro: $\liminf_{j \rightarrow \infty} \mathcal{M}(B(p_j, r)) \geq \mathcal{M}(B(p_0, r))$.

Coro: $\partial B(p_j, r) \rightarrow \partial B(p_0, r)$.

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then \((B(p, r), d_M, [[B(p, r)]]) \) is an integral current space for a.e. \(r > 0 \).

Thm [SW]: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0) \)
\(\exists \) complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \) such that
\[
d_Z^F(\varphi_j\#T_j, \varphi_0\#T_0) \to 0 \quad \text{and} \quad \varphi_j\#T_j(\omega) \to \varphi_0\#T_0(\omega).
\]

Thm: If \(p_0 \in M_0 \) and \(M_j \xrightarrow{SWIF} M_0 \), then
\(\exists p_j \in M_j \) such that \(d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0 \).

Furthermore: For a.e. \(r > 0 \) \(\exists \) subsequence \(j_k \) such that
\((B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]]) \xrightarrow{SWIF} (B(p_0, r), d_M, [[B(p_0, r)])] \).

Coro: \(\liminf_{j \to \infty} M(B(p_j, r)) \geq M(B(p_0, r)) \).

Coro: \(\partial B(p_j, r) \to \partial B(p_0, r) \).

Coro: \(\text{FillVol}(\partial B(p_j, r)) \to \text{FillVol}(\partial B(p_0, r)). \)
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If $B(p, r)$ is a ball in an integral current space M then $(B(p, r), d_M, [[B(p, r)]]))$ is an integral current space for a.e. $r > 0$.

Thm [SW]: If $M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0)$
\exists complete separable Z and dist. pres. $\varphi_j : X_j \rightarrow Z$ such that
$d^Z_F(\varphi_j\#T_j, \varphi_0\#T_0) \rightarrow 0$ and $\varphi_j\#T_j(\omega) \rightarrow \varphi_0\#T_0(\omega)$.

Thm: If $p_0 \in M_0$ and $M_j \xrightarrow{SWIF} M_0$, then
$\exists p_j \in M_j$ such that $d_Z(\varphi_j(p_j), \varphi_0(p_0)) \rightarrow 0$.

Furthermore: For a.e. $r > 0$ \exists subsequence j_k such that
$(B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]])) \xrightarrow{SWIF} (B(p_0, r), d_M, [[B(p_0, r)]]))$.

Coro: $\liminf_{j \rightarrow \infty} M(B(p_j, r)) \geq M(B(p_0, r))$.

Coro: $\partial B(p_j, r) \rightarrow \partial B(p_0, r)$.

Coro: $\text{FillVol}(\partial B(p_j, r)) \rightarrow \text{FillVol}(\partial B(p_0, r))$.

Coro: $\text{Diam}(M_0) \leq \liminf_{j \rightarrow \infty} \text{Diam}(M_j)$.

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then \((B(p, r), d_M, [[B(p, r)]])) is an integral current space for a.e. \(r > 0 \).

Thm [SW]: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0) \) there exist complete separable \(Z \) and dist. pres. \(\varphi_j : X_j \to Z \) such that \(d_Z^F(\varphi_j\#T_j, \varphi_0\#T_0) \to 0 \) and \(\varphi_j\#T_j(\omega) \to \varphi_0\#T_0(\omega) \).

Thm: If \(p_0 \in M_0 \) and \(M_j \xrightarrow{SWIF} M_0 \), then there exist \(p_j \in M_j \) such that \(d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0 \).

Furthermore: For a.e. \(r > 0 \) there exist a subsequence \(j_k \) such that \((B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]])) \xrightarrow{SWIF} (B(p_0, r), d_M, [[B(p_0, r)]]))\).

Coro: \(\liminf_{j \to \infty} M(B(p_j, r)) \geq M(B(p_0, r)) \).

Coro: \(\partial B(p_j, r) \to \partial B(p_0, r) \).

Coro: \(\text{FillVol}(\partial B(p_j, r)) \to \text{FillVol}(\partial B(p_0, r)) \).

Coro: \(\text{Diam}(M_0) \leq \liminf_{j \to \infty} \text{Diam}(M_j) \).

Thm: If \(M^m_j \xrightarrow{SWIF} M_{SWIF} \neq 0^m \) then \(\exists N_j \subset M_j \) such that \(N_j \xrightarrow{GH} M_{SWIF} \) and \(\liminf_{j \to \infty} M(N_j) \geq M(M_{SWIF}) \).

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Balls and SWIF Limits [Sormani-ArzAsc]:

Thm: If \(B(p, r) \) is a ball in an integral current space \(M \) then \((B(p, r), d_M, [[B(p, r)]])\) is an integral current space for a.e. \(r > 0 \).

Thm [SW]: If \(M_j = (X_j, d_j, T_j) \xrightarrow{SWIF} M_0 = (x_0, d_0, T_0) \) there exists a complete separable \(Z \) and distance preserving \(\varphi_j : X_j \to Z \) such that \(d^Z_F(\varphi_j\#T_j, \varphi_0\#T_0) \to 0 \) and \(\varphi_j\#T_j(\omega) \to \varphi_0\#T_0(\omega) \).

Thm: If \(p_0 \in M_0 \) and \(M_j \xrightarrow{SWIF} M_0 \), then there exists \(p_j \in M_j \) such that \(d_Z(\varphi_j(p_j), \varphi_0(p_0)) \to 0 \).

Furthermore: For a.e. \(r > 0 \) there exists a subsequence \(j_k \) such that \((B(p_{j_k}, r), d_M, [[B(p_{j_k}, r)]]) \xrightarrow{SWIF} (B(p_0, r), d_M, [[B(p_0, r)]])\).

Coro: \(\liminf_{j \to \infty} M(B(p_j, r)) \geq M(B(p_0, r)) \).

Coro: \(\partial B(p_j, r) \to \partial B(p_0, r) \).

Coro: \(\text{FillVol}(\partial B(p_j, r)) \to \text{FillVol}(\partial B(p_0, r)) \).

Coro: \(\text{Diam}(M_0) \leq \liminf_{j \to \infty} \text{Diam}(M_j) \).

Thm: If \(M_j^m \xrightarrow{SWIF} M_{SWIF} \neq 0^m \) then there exists \(N_j \subset M_j \) such that \(N_j \xrightarrow{GH} M_{SWIF} \) and \(\liminf_{j \to \infty} M(N_j) \geq M(M_{SWIF}) \).

The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
Ambrosio-Kirchheim Slicing Theorem:
Given Lipschitz, $f : Z \to \mathbb{R}$, and integral current, T, for a.e. $s \in \mathbb{R}$
one can define the slice of T by f at s which is an integral current
\[
<T, f, s> := -\partial (T \upharpoonright f^{-1}(s, \infty)) + (\partial T) \upharpoonright f^{-1}(s, \infty),
\]
where S restricted to U is $(S \upharpoonright U)(h, \pi_1, \ldots) = S(\chi_U \cdot h, \pi_1, \ldots)$.

Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, \(f : Z \to \mathbb{R} \), and integral current, \(T \), for a.e. \(s \in \mathbb{R} \) one can define the slice of \(T \) by \(f \) at \(s \) which is an integral current

\[
<T, f, s> := -\partial (T \upharpoonright f^{-1}(s, \infty)) + (\partial T) \upharpoonright f^{-1}(s, \infty),
\]

where \(S \) restricted to \(U \) is \((S \upharpoonright U)(h, \pi_1, ...) = S(\chi_U \cdot h, \pi_1, ...).\)

To prove it is an integral current, they prove its mass and the mass of \(\partial <T, f, s> = \langle -\partial T, f, s \rangle \) is finite for a.e. \(s \in \mathbb{R} \).
Ambrosio-Kirchheim Slicing Theorem:

Given Lipschitz, \(f : Z \to \mathbb{R} \), and integral current, \(T \), for a.e. \(s \in \mathbb{R} \), one can define the slice of \(T \) by \(f \) at \(s \) which is an integral current

\[
< T, f, s > := -\partial \left(T \llcorner f^{-1}(s, \infty) \right) + (\partial T) \llcorner f^{-1}(s, \infty),
\]

where \(S \) restricted to \(U \) is \((S \llcorner U)(h, \pi_1, ...) = S(\chi_U \cdot h, \pi_1, ...) \).

To prove it is an integral current, they prove its mass and the mass of \(\partial < T, f, s > = < -\partial T, f, s > \) is finite for a.e. \(s \in \mathbb{R} \). In fact:

\[
\int_{s \in \mathbb{R}} M(< T, f, s >) \, ds = M(T \llcorner df) \leq \text{Lip}(f) \, M(T)
\]

where \((T \llcorner df)(h, \pi_1, ..., \pi_{m-1}) = T(h, f, \pi_1, ..., \pi_{m-1})\).
Flat Distance between Slices in Z

Given integral currents T_i in Z
then we have $T_1 - T_2 = A + \partial B$
where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$.
Flat Distance between Slices in Z

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$
where $d_{\mathcal{F}}(T_1, T_2) = M(A) + M(B)$.

$< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >$
Flat Distance between Slices in Z

Given integral currents T_i in Z
then we have $T_1 - T_2 = A + \partial B$
where $d_F^Z(T_1, T_2) = M(A) + M(B)$.

$< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >$

$< T_1, f, s > - < T_2, f, s > = < A, f, s > - \partial < B, f, s >$
Flat Distance between Slices in Z

Given integral currents T_i in Z
then we have $T_1 - T_2 = A + \partial B$
where $d^Z_F(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$.

$< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >$

$< T_1, f, s > - < T_2, f, s > = < A, f, s > - \partial < B, f, s >$

$d^Z_F(< T_1, f, s >, < T_2, f, s >) \leq \mathbf{M}(< A, f, s >) + \mathbf{M}(< B, f, s >)$
Flat Distance between Slices in Z

Given integral currents T_i in Z then we have $T_1 - T_2 = A + \partial B$ where $d_F^Z(T_1, T_2) = \mathbf{M}(A) + \mathbf{M}(B)$.

\[
< T_1, f, s > - < T_2, f, s > = < A, f, s > + < \partial B, f, s >
\]
\[
< T_1, f, s > - < T_2, f, s > = < A, f, s > - \partial < B, f, s >
\]
\[
d_F^Z(< T_1, f, s >, < T_2, f, s >) \leq \mathbf{M}(< A, f, s >) + \mathbf{M}(< B, f, s >)
\]

Since

\[
\int_{s \in \mathbb{R}} \mathbf{M}(< A, f, s >) \, ds \leq \text{Lip}(f) \mathbf{M}(A)
\]

and

\[
\int_{s \in \mathbb{R}} \mathbf{M}(< B, f, s >) \, ds \leq \text{Lip}(f) \mathbf{M}(B)
\]

we have,

\[
\int_{s \in \mathbb{R}} d_F^Z(< T_1, f, s >, < T_2, f, s >) \, ds \leq \text{Lip}(f) \left(\mathbf{M}(A) + \mathbf{M}(B) \right)
\]

\[
\int_{s \in \mathbb{R}} d_F^Z(< T_1, f, s >, < T_2, f, s >) \, ds \leq \text{Lip}(f) d_F^Z(T_1, T_2)
\]
Convergence of Slices

If \(d^Z_F(T_j, T_\infty) \to 0 \) and \(f : Z \to \mathbb{R} \) has \(\text{Lip}(f) \leq 1 \) then

\[
\int_{s \in \mathbb{R}} d^Z_F(<T_j, f, s>, <T_\infty, f, s>) \, ds \to 0.
\]
Convergence of Slices

If $d^Z_F(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $Lip(f) \leq 1$ then

$$\int_{s \in \mathbb{R}} d^Z_F(<T_j, f, s>, <T_\infty, f, s>) \, ds \to 0.$$

So a.e. $s \in \mathbb{R} \exists$ subseq s.t. $d^Z_F(<T_j, f, s>, <T_\infty, f, s>) \to 0$.

[PS] also define a sliced filling volume and estimate it.
Convergence of Slices

If $d_Z^F(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $\text{Lip}(f) \leq 1$ then

$$\int_{s \in \mathbb{R}} d_Z^F(<T_j, f, s>, <T_\infty, f, s>) \, ds \to 0.$$

So a.e. $s \in \mathbb{R}$ exists subseq s.t. $d_Z^F(<T_j, f, s>, <T_\infty, f, s>) \to 0$.

What about slices of converging integral current spaces where $\text{Slice}(\langle X, d, T \rangle, f, s) = (\text{set}(<T, f, s>), d, <T, f, s>)$?
Convergence of Slices

If $d_F^Z(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $\text{Lip}(f) \leq 1$ then

$$\int_{s \in \mathbb{R}} d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R}$ exists a subsequence s.t. $d_F^Z(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \to 0$.

What about slices of converging integral current spaces where $\text{Slice}((X, d, T), f, s) = (\text{set}(\langle T, f, s \rangle), d, \langle T, f, s \rangle)$?

$(X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty)$ implies

$\exists Z$ and $\varphi_j : X_j \to Z$ s.t. $d_F^Z(\varphi_j \# T_j, \varphi_\infty \# T_\infty) \to 0$.

[PS] also define a sliced filling volume and estimate it.
Convergence of Slices

If \(d_F^{Z}(T_j, T_\infty) \to 0 \) and \(f : Z \to \mathbb{R} \) has \(\text{Lip}(f) \leq 1 \) then

\[
\int_{s \in \mathbb{R}} d_F^{Z}(< T_j, f, s >, < T_\infty, f, s >) \, ds \to 0.
\]

So a.e. \(s \in \mathbb{R} \) \(\exists \) subseq s.t. \(d_F^{Z}(< T_j, f, s >, < T_\infty, f, s >) \to 0 \).

What about slices of converging integral current spaces where \(\text{Slice}((X, d, T), f, s) = (\text{set}(< T, f, s >), d, < T, f, s >) \)?

\((X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty) \) implies

\(\exists Z \) and \(\varphi_j : X_j \to Z \) s.t. \(d_F^{Z}(\varphi_j\# T_j, \varphi_\infty\# T_\infty) \to 0 \).

Taking \(f_j = f \circ \varphi_j \) we get subseq of sliced spaces for a.e. \(s \in \mathbb{R} \):

\(\text{Slice}(M_j, f_j, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, f_\infty, s_\infty) \).
Convergence of Slices

If \(d_F^Z(T_j, T_\infty) \to 0 \) and \(f : Z \to \mathbb{R} \) has \(\text{Lip}(f) \leq 1 \) then

\[
\int_{s \in \mathbb{R}} d_F^Z(<T_j, f, s>, <T_\infty, f, s>) \, ds \to 0.
\]

So a.e. \(s \in \mathbb{R} \) \(\exists \) subseq s.t. \(d_F^Z(<T_j, f, s>, <T_\infty, f, s>) \to 0. \)

What about slices of converging integral current spaces where \(\text{Slice}((X, d, T), f, s) = (\text{set}(<T, f, s>), d, <T, f, s>)? \)

\((X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty) \) implies

\(\exists Z \text{ and } \varphi_j : X_j \to Z \) s.t. \(d_F^Z(\varphi_j \# T_j, \varphi_\infty \# T_\infty) \to 0. \)

Taking \(f_j = f \circ \varphi_j \) we get subseq of sliced spaces for a.e. \(s \in \mathbb{R}: \)

\(\text{Slice}(M_j, f_j, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, f_\infty, s_\infty). \)

Portegies-Sormani: (after significant work) \(M_j \xrightarrow{\text{SWIF}} M_\infty \)

and \(p_j \in M_j \) converges to \(p_\infty \in M_\infty \) then a.e. \(s \in \mathbb{R}: \)

a subseq \(\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty) \)
Convergence of Slices

If $d^Z_F(T_j, T_\infty) \to 0$ and $f: Z \to \mathbb{R}$ has $\text{Lip}(f) \leq 1$ then

$$\int_{s \in \mathbb{R}} d^Z_F(<T_j, f, s>, <T_\infty, f, s>) \, ds \to 0.$$

So a.e. $s \in \mathbb{R}$ there exists a subseq s.t. $d^Z_F(<T_j, f, s>, <T_\infty, f, s>) \to 0$.

What about slices of converging integral current spaces where $\text{Slice}((X, d, T), f, s) = (\text{set}(<T, f, s>), d, <T, f, s>)$?

$(X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty)$ implies

$\exists Z$ and $\varphi_j: X_j \to Z$ s.t. $d^Z_F(\varphi_j\# T_j, \varphi_\infty\# T_\infty) \to 0$.

Taking $f_j = f \circ \varphi_j$ we get a subseq of sliced spaces for a.e. $s \in \mathbb{R}$:

$$\text{Slice}(M_j, f_j, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, f_\infty, s_\infty).$$

Portegies-Sormani: (after significant work) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

[PS] also define a sliced filling volume and estimate it.
Convergence of Slices

If $d^Z_F(T_j, T_\infty) \to 0$ and $f : Z \to \mathbb{R}$ has $\text{Lip}(f) \leq 1$ then

$$\int_{s \in \mathbb{R}} d^Z_F(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \, ds \to 0.$$

So a.e. $s \in \mathbb{R}$ \exists subseq s.t. $d^Z_F(\langle T_j, f, s \rangle, \langle T_\infty, f, s \rangle) \to 0$.

What about slices of converging integral current spaces where $\text{Slice}(\langle X, d, T \rangle, f, s) = (\text{set}(\langle T, f, s \rangle), d, \langle T, f, s \rangle)$?

$(X_j, d_j, T_j) \xrightarrow{\text{SWIF}} (X_\infty, d_\infty, T_\infty)$ implies

$\exists Z$ and $\varphi_j : X_j \to Z$ s.t. $d^Z_F(\varphi_j \# T_j, \varphi_\infty \# T_\infty) \to 0$.

Taking $f_j = f \circ \varphi_j$ we get subseq of sliced spaces for a.e. $s \in \mathbb{R}$:

$\text{Slice}(M_j, f_j, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, f_\infty, s_\infty)$.

Portegies-Sormani: (after significant work) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

[PS] also define a sliced filling volume and estimate it.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

Volume Preserving Intrinsic Flat Convergence

$M_j \xrightarrow{\text{VF}} M_\infty$ and $\lim_{j \to \infty} M_j = M_\infty$.

This implies $M_j \geq \liminf_{j \to \infty} M_j \geq \liminf_{j \to \infty} \mathcal{M}(B_j) + \liminf_{j \to \infty} \mathcal{M}(M_j \setminus B_j) \geq \mathcal{M}(B_\infty) + \mathcal{M}(M_\infty \setminus B_\infty) = \mathcal{M}(M_\infty)$.

So all are equality and so $\lim_{j \to \infty} \mathcal{M}(B(p_j, r)) = \mathcal{M}(B(p_\infty, r))$.

Portegies a la Fukaya: control eigenvalues of the spaces:

$\limsup_{j \to \infty} \lambda_k(M_j) \to \lambda_k(M_\infty)$.

Jauregui-Lee prove areas of certain surfaces converge by studying the integrals of the masses of slices.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$
and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and $\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Portegies a la Fukaya: control eigenvalues of the spaces:

$\limsup_{j \to \infty} \lambda_k(M_j) \to \lambda_k(M_\infty)$.

Jauregui-Lee prove areas of certain surfaces converge by studying the integrals of the masses of slices.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and $\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$

and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\lim \inf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and

$\lim \inf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \lim \inf_{j \to \infty} M(M_j)$.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\lim \inf j \to \infty M(B(p_j, s)) \geq M(B(p_\infty, s))$ and $\lim \inf j \to \infty M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

- $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim j \to \infty M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \lim \inf j \to \infty M(M_j)$

$$\geq \lim \inf j \to \infty M(B_j) + \lim \inf j \to \infty M(M_j \setminus B_j)$$
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$

and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\lim_{j \to \infty} \mathcal{M}(B(p_j, s)) \geq \mathcal{M}(B(p_\infty, s))$ and

$\lim_{j \to \infty} \mathcal{M}(\partial B(p_j, s)) \geq \mathcal{M}(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} \mathcal{M}(M_j) = \mathcal{M}(M_\infty)$.

This implies $\mathcal{M}(M_\infty) \geq \lim_{j \to \infty} \mathcal{M}(M_j)$

$\geq \lim_{j \to \infty} \mathcal{M}(B_j) + \lim_{j \to \infty} \mathcal{M}(M_j \setminus B_j)$

$\geq \mathcal{M}(B_\infty) + \mathcal{M}(M_\infty \setminus B_\infty)$
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

- a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and

$\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

- $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \liminf_{j \to \infty} M(M_j)$

$\geq \liminf_{j \to \infty} M(B_j) + \liminf_{j \to \infty} M(M_j \setminus B_j)$

$\geq M(B_\infty) + M(M_\infty \setminus B_\infty) = M(M_\infty)$
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$

and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and

$\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \liminf_{j \to \infty} M(M_j)$

$\geq \liminf_{j \to \infty} M(B_j) + \liminf_{j \to \infty} M(M_j \setminus B_j)$

$\geq M(B_\infty) + M(M_\infty \setminus B_\infty) = M(M_\infty)$

So all are equality
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$
and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and

$\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \liminf_{j \to \infty} M(M_j)$

$\geq \liminf_{j \to \infty} M(B_j) + \liminf_{j \to \infty} M(M_j \setminus B_j)$

$\geq M(B_\infty) + M(M_\infty \setminus B_\infty) = M(M_\infty)$

So all are equality and so $\lim_{j \to \infty} M(B(p_j, r)) = M(B(p_\infty, r))$.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$ and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$: a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\liminf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and $\liminf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \liminf_{j \to \infty} M(M_j)$

$\geq \liminf_{j \to \infty} M(B_j) + \liminf_{j \to \infty} M(M_j \setminus B_j)$

$\geq M(B_\infty) + M(M_\infty \setminus B_\infty) = M(M_\infty)$

So all are equality and so $\lim_{j \to \infty} M(B(p_j, r)) = M(B(p_\infty, r)$.

Portegies a la Fukaya: control eigenvalues of the spaces:

$\limsup_{j \to \infty} \lambda_k(M_j) \to \lambda_k(M_\infty)$.
Balls and \mathcal{VF} Limits

Portegies-Sormani: (from last slide) $M_j \xrightarrow{\text{SWIF}} M_\infty$
and $p_j \in M_j$ converges to $p_\infty \in M_\infty$ then a.e. $s \in \mathbb{R}$:

a subseq $\text{Slice}(M_j, \rho_{p_j}, s) \xrightarrow{\text{SWIF}} \text{Slice}(M_\infty, \rho_{p_\infty}, s_\infty)$.

So $B(p_j, s) \xrightarrow{\text{SWIF}} B(p_\infty, s)$ and $\partial B(p_j, s) \xrightarrow{\text{SWIF}} \partial B(p_\infty, s)$.

So $\lim \inf_{j \to \infty} M(B(p_j, s)) \geq M(B(p_\infty, s))$ and

$\lim \inf_{j \to \infty} M(\partial B(p_j, s)) \geq M(\partial B(p_\infty, s))$.

Volume Preserving Intrinsic Flat Convergence $M_j \xrightarrow{\mathcal{VF}} M_\infty$:

$M_j \xrightarrow{\text{SWIF}} M_\infty$ and $\lim_{j \to \infty} M(M_j) = M(M_\infty)$.

This implies $M(M_\infty) \geq \lim \inf_{j \to \infty} M(M_j)$

$\geq \lim \inf_{j \to \infty} M(B_j) + \lim \inf_{j \to \infty} M(M_j \setminus B_j)$

$\geq M(B_\infty) + M(M_\infty \setminus B_\infty) = M(M_\infty)$

So all are equality and so $\lim_{j \to \infty} M(B(p_j, r)) = M(B(p_\infty, r)$.

Portegies a la Fukaya: control eigenvalues of the spaces:

$\lim \sup_{j \to \infty} \lambda_k(M_j) \to \lambda_k(M_\infty)$.

Jauregui-Lee prove areas of certain surfaces converge
by studying the integrals of the masses of slices.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$

where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces} \Sigma \subset M_j^3 \}$

Then M_∞ has generalized "Scalar $\geq 0"$

Furthermore: we believe that we have $M_j \xrightarrow{\text{VF}} M_\infty$

where M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected?

Does it contain geodesics?

For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.

Taking x_j to be a midpoint between p_j and q_j, can we show $\text{FillVol}(B(x_j, r)) \geq C V, D, A r^3$?

OPEN.

We must use x_j a midpoint because other points can disappear.

Perhaps use sliced filling volumes with $f_j(\cdot) = d_j(\cdot, p_j)$?

OPEN.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\liminf_{j \to \infty} \text{Vol}(M_j) \geq \mathbf{M}(M_\infty)$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces} \Sigma \subset M_j^3 \}$

Then M_∞ has generalized "Scalar $\geq 0"$.

Furthermore: we believe that we have $M_j \xrightarrow{\text{VF}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?

For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear.

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.

Taking x_j to be a midpoint between p_j and q_j, can we show $\text{FillVol}(B(x_j, r)) \geq C V, D, A r^3$?

OPEN. We must use x_j a midpoint because other points can disappear. Perhaps use sliced filling volumes with $\text{f}_j(\cdot) = d_j(\cdot, p_j)$?

OPEN.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\liminf_{j \to \infty} \text{Vol}(M_j) \geq \text{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$

OPEN.

We must use x_j as a midpoint because other points can disappear.

Perhaps use sliced filling volumes with $f_j(\cdot) = d_j(\cdot, p_j)$?
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\liminf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\liminf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “$\text{Scalar} \geq 0$”
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{Min}A_j \geq A$

where $\text{Min}A_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu_\mathcal{F}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathbf{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu, \mathcal{F}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.
Suppose \(M_j^3 \) have \(\text{Vol}(M_j^3) \leq V \) and \(\text{Diam}(M_j^3) \leq D \)

by [Wenger]: subseq \(M_j \overset{\text{SWIF}}{\longrightarrow} M_\infty \) possibly 0.

and by [SW]: \(\lim_{j \to \infty} \text{Vol}(M_j) \geq M(M_\infty) \).

and by [SW]: If \(M_\infty \neq 0 \) then it is \(m \)-rectifiable.

Conjecture: If in addition we have \(\text{Scalar}_j \geq 0 \) and \(\text{MinA}_j \geq A \)

where \(\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\} \)

Then \(M_\infty \) has generalized “\(\text{Scalar} \geq 0 \)”

Furthermore: we believe that we have \(M_j \overset{\nu,F}{\longrightarrow} M_\infty \) where \(M_\infty \) is a connected length space with Euclidean tangent cones.

How can we show \(M_\infty \) is connected?
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “$\text{Scalar} \geq 0$”

Furthermore: we believe that we have $M_j \xrightarrow{\nuF} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\liminf_{j \to \infty} \text{Vol}(M_j) \geq \mathbf{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu\mathcal{F}} M_\infty$ where
M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints,
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\lim inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\textbf{Scalar}_j \geq 0$ and $\textbf{MinA}_j \geq A$
where $\textbf{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j \}$
Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu,F} M_\infty$ where
M_∞ is a connected length space with Euclidean tangent cones.
How can we show M_∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min \{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “Scalar $\geq 0”$

Furthermore: we believe that we have $M_j \xrightarrow{\nu\mathcal{F}} M_\infty$ where
M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.
Taking x_j to be a midpoint between p_j and q_j,..
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq M(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3 \}$
Then M_∞ has generalized “$\text{Scalar} \geq 0$”

Furthermore: we believe that we have $M_j \xrightarrow{\nu F} M_\infty$ where
M_∞ is a connected length space with Euclidean tangent cones.
How can we show M_∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints,
but for SWIF limits midpoints might disappear....
Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.
Taking x_j to be a midpoint between p_j and q_j,
can we show $\text{FillVol}(B(x_j, r)) \geq C_{V,D,A}r^3$?
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.
and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq M(M_\infty)$.
and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$
where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j\}$
Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu,F} M_\infty$ where
M_∞ is a connected length space with Euclidean tangent cones.
How can we show M_∞ is connected? Does it contain geodesics?
For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.
Taking x_j to be a midpoint between p_j and q_j,
can we show $\text{FillVol}(B(x_j, r)) \geq C_{V,D,A} r^3$? OPEN.
We must use x_j a midpoint because other points can disappear.
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq \mathcal{M}(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$

where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3 \}$

Then M_∞ has generalized “Scalar $\geq 0”$

Furthermore: we believe that we have $M_j \xrightarrow{\nu_{\mathcal{F}}} M_\infty$ where

M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?

For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.

Taking x_j to be a midpoint between p_j and q_j,

can we show $\text{FillVol}(B(x_j, r)) \geq C_{V,D,A}r^3$? OPEN.

We must use x_j a midpoint because other points can disappear.

Perhaps use sliced filling volumes with $f_j(\cdot) = d_j(\cdot, p_j)$?
IAS Emerging Topic Conjecture [Gromov-S]

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

by [Wenger]: subseq $M_j \xrightarrow{\text{SWIF}} M_\infty$ possibly 0.

and by [SW]: $\lim \inf_{j \to \infty} \text{Vol}(M_j) \geq M(M_\infty)$.

and by [SW]: If $M_\infty \neq 0$ then it is m-rectifiable.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j \}$

Then M_∞ has generalized “$\text{Scalar} \geq 0$”

Furthermore: we believe that we have $M_j \xrightarrow{\nu,F} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How can we show M_∞ is connected? Does it contain geodesics?

For GH limits, Gromov proved midpoints converged to midpoints, but for SWIF limits midpoints might disappear....

Given $p, q \in M_\infty$, $\exists p_j, q_j \in M_j$ converging to p, q.

Taking x_j to be a midpoint between p_j and q_j,

can we show $\text{FillVol}(B(x_j, r)) \geq C_{V,D,A} r^3$? OPEN.

We must use x_j a midpoint because other points can disappear.

Perhaps use sliced filling volumes with $f_j(\cdot) = d_j(\cdot, p_j)$? OPEN
IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

So a subsequence $M_j \overset{\text{SWIF}}{\to} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where

$$\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \overset{\nu_{\mathcal{F}}}{\to} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.
IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

So a subsequence $M_j \xrightarrow{SWIF} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min \{ \text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3 \}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{V,F} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.
IAS Emerging Topic Conjecture: Tan Cones

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

So a subsequence $M_j \xrightarrow{\text{SWIF}} M_{\infty}$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j\}$

Then M_{∞} has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\nu_F} M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones. How would we prove the tangent cones are Euclidean?
IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

So a subsequence $M_j \xrightarrow{\text{SWIF}} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min \{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{VF} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, T_pM, which is a normed vector space:

$$(B(p, r_i), d/r_i, [[B(p, r_i)]] \xrightarrow{\text{SWIF}} B(0, 1) \subset T_pM).$$
IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

So a subsequence $M_j \xrightarrow{\text{SWIF}} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{V}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, $T_p M$, which is a normed vector space:

$$(B(p, r_i), d/r_i, [[B(p, r_i)]] \xrightarrow{\text{SWIF}} B(0, 1) \subset T_p M).$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.
IAS Emerging Topic Conjecture: Tan Cones

Suppose M_j^3 have $\text{Vol}(M_j^3) \leq V$ and $\text{Diam}(M_j^3) \leq D$

So a subsequence $M_j \xrightarrow{\text{SWIF}} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min \{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M_j^3\}$

Then M_∞ has generalized “$\text{Scalar} \geq 0$”

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{V}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, $T_p M$, which is a normed vector space:

$$(B(p, r_i), d/r_i, [[B(p, r_i)]]) \xrightarrow{\text{SWIF}} B(0, 1) \subset T_p M.$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.

Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $\| T_\infty \| = 1 \cdot \theta \cdot H^3$.

IAS Emerging Topic Conjecture: Tan Cones

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

So a subsequence $M_j \xrightarrow{\text{SWIF}} M_\infty$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j\}$

Then M_∞ has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j \xrightarrow{\mathcal{V}_\mathcal{F}} M_\infty$ where M_∞ is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_\infty$, there is a tangent cone, $T_p M$, which is a normed vector space:

$$(B(p, r_i), d/r_i, [[B(p, r_i)]])) \xrightarrow{\text{SWIF}} B(0, 1) \subset T_p M.$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.

Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $||T_\infty|| = 1 \cdot \theta \cdot \mathbb{H}^3$.

Conjecture: the weight $\theta = 1$.
IAS Emerging Topic Conjecture: Tan Cones

Suppose M^3_j have $\text{Vol}(M^3_j) \leq V$ and $\text{Diam}(M^3_j) \leq D$

So a subsequence $M_j^{\text{SWIF}} \rightarrow M_{\infty}$.

Conjecture: If in addition we have $\text{Scalar}_j \geq 0$ and $\text{MinA}_j \geq A$ where $\text{MinA}_j = \min\{\text{Area}(\Sigma) : \text{closed min surfaces } \Sigma \subset M^3_j\}$

Then M_{∞} has generalized “Scalar ≥ 0”

Furthermore: we believe that we have $M_j^{\nu_F} \rightarrow M_{\infty}$ where M_{∞} is a connected length space with Euclidean tangent cones.

How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. $p \in M_{\infty}$, there is a tangent cone, $T_p M$, which is a normed vector space:

$$(B(p, r_i), d/r_i, [[B(p, r_i)]])^{\text{SWIF}} \rightarrow B(0, 1) \subset T_p M.$$

So perhaps we could use geometric stability of a rigidity theorem that implies a ball is a Euclidean ball to prove this.

Note that $\lambda(p) = 1$ if $T_p M$ is Euclidean, so $||T_{\infty}|| = 1 \cdot \theta \cdot \mathbb{H}^3$.

Conjecture: the weight $\theta = 1$. So $||T_{\infty}|| = \mathbb{H}^3$.

Open: Prove $||T_{\infty}|| = \mathbb{H}^3$. (Ricci case by Colding “Volumes....”).