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Lectures 3&4: Techniques to Apply to Prove Convergence

See https://sites.google.com/site/intrinsicflatconvergence/
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Volume Preserving Intrinsic Flat VF Convergence
Defn: M; 225 M, if M; £ M., and Vol(M;) — Vol(Ms,).
Defn: M; 25 My if dr(Mj, Mso) = dswir(Mj, Msg) — 0:

Sormani-Wenger: Intrinsic Flat Distance
The intrinsic flat distance between oriented manifolds M is:

dswir (", M3") = inf {dZ (1 [IM]] o (M) | 01 : M — 2}

where the infimum is taken over all complete metric spaces, Z,
and over all distance preserving maps ¢; : M{" — Z.

Here: dZ (p14[[M{]], p24[[M2"]]) is the Federer-Fleming Flat dist

—inf { () + M(B) : I8+ 08 = 1, M) ~ [}
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. and B are currents acting on differential forms, w, in RNV,
They view a submanifold ¢(M™) as an m-current 4 [[M™]]:
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Federer-Fleming (1959): Use Whitney's definition but now
. and B are integral currents acting on diff forms, w, in RNV,
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DeGiorgi (1995): For a complete metric space, Z,

replace diff forms f dmy A - -+ A dmp, with tuples (f, 71, ....mm)

s.t. f:Z — R is bounded Lipschitz and 7; : Z — R are Lipschitz.
Given a Lipschitz ¢ : M™ — Z, define a current acting on tuples:
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of finite weighted volume: Y2, |a;|H™(¢i(A)) < .
Mass is not the weighted volume in Ambrosio-Kirchheim Theory!
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Ambrosio-Kirchheim (2000): an integral current, T, is an
integer rectifiable current s.t. 9T is also integer rectifiable.

where an integer rectifiable current, T, has cntbly many pairwise
disjoint biLip charts ¢; : A; — ¢;(A;) C Z and weights a; € Z s.t.
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2
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Defn: An Integral Current Space is m-rectifiable

(which means it has countably many bi-Lipschitz charts

of the same dimension m as the original sequence)

and it has a well defined (m-1)-rectifiable boundary.

The charts are oriented and have integer valued weights, 0,

Now we can truly define integral current spaces.
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Key ldea: Integral currents generalize oriented submanifolds in 2.
Key New ldea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X,d, T)
is a metric space (X, d) and integral current T s.t. set(T) = X.
Furthermore: M(M) = M(T) and OM = (set(0T),d,0T).
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Sormani-Wenger: Intrinsic Flat Distance

between integral current spaces M/" = (X, di, T;) is:
dswir(M{", MF") = inf { oF (14 1, 024 T2) | 1 M = 2}

where o T(f, 71, ....,7m) = T(fop,mop, ..., mm o), and
where the infimum is taken over all complete metric spaces, Z,
and over all distance preserving maps ¢; : M[" — Z.

Here: df (¢14 T1, 24 T2) is the Federer-Fleming Flat dist

= inf {M(I)+M(B);.+38 2901#7'1—802#72}
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M(NS") < FillVol(OM3") + €/2.
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M(Ny2) < M(N)+M(NST) < dsyir (My, Mo)+FillVol(OMZ)+e.
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Volume Preserving Intrinsic Flat VF Convergence
Defn: M; 225 M, if M; £ M., and Vol(M;) — Vol(Ms,).
Defn: M; 25 My if dr(Mj, Mso) = dswir(Mj, Msg) — 0:

Sormani-Wenger: Intrinsic Flat Distance
The intrinsic flat distance between oriented manifolds M is:

dswir (", M3") = inf {dZ (1 [IM]] o (M) | 01 : M — 2}

where the infimum is taken over all complete metric spaces, Z,
and over all distance preserving maps ¢; : M{" — Z.

Here: dZ (p14[[M{]], p24[[M2"]]) is the Federer-Fleming Flat dist

—inf { () + M(B) : I8+ 08 = 1, M) ~ [}

M;
“;:
~L7

» R .,



Lakzian-Sormani: Estimating dsyr

Lakaian ~Sormani: Suppose (My.gy) and (M3,g5) are oriented precompact Riemann-
ian manifolds with diffeomorphic subregions W; C M;. Identifying W) = W, =W
assume that on W we have

g1 < (1+€)°g and g < (14€)%g1.
Taking the extrinsic diameters,
diam(M;) <D
we define a hemispherical width,
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Lakzian-Sormani: Estimating dsyr

Lokzian =Sormani: Suppose (My,g;) and (M,g3) are oriented precompact Riemann-
ian manifolds with diffeomorphic subregions W; C M;. Identifying W) = W, =W
assume that on W we have

g1 < (14+€)%grand g2 < (1+¢)°gy.

Taking the extrinsic diameters,

diam(M;) <D
we define a hemispherical width,
© -1
el S !, accos(Lre) or e,
eped T
Carred o o2

Taking the difference in distances with respect to the outside manifolds, we set

A= sup |dy, (x,y) —dp, (x,y)| < 2D,
sup |dm, (x,y) — dpgy (x, )]

ol ks s
A T
and we define the height, s* v M
2

%= max{ V2AD,D /€2 + 2¢}.

Then <aking Z=M, & Wxloh]L ‘*3:5?:74 w,<[o, hJu My

dz(M(,M;) < (2h+a) (VOIm(Wl) + Vol (W2) + Vol,,—1 (OW)) + Vol,,— (9Wz))
+ Vol,,, (M) \ W; ) + Vol,,(Mz \ W>),




Lakzian-Sormani: Estimating dsyr

Lakzian ~Sormani: Suppose (My,gy) and (M.g3) are oriented precompact Riemann-
ian manifolds with diffeomorphic subregions W; C M;. Identifying W) = W, =W
assume that on W we have

21 < (14€)%grand g2 < (1+¢)°gy.
Taking the extrinsic diameters,
diam(M;) <D

we define a hemispherical width,

o :
/ -1
oelo) Sg g UL, v, A “2

Ganped /wwz b3

Taking the difference in distances with respect to the outside manifolds, we set

A= sup |dy, (x,y) —dp, (x,y)| < 2D,
me}:yl iy (%,7) = dpgy (¥, )] Py 2,

and we define the height, ?:\;"(—(“ \I o
= max{ V2AD,D \/52.1._23}
Then <aking Z=M, L W,x(o,h] 4L (z):'ﬁ;:?)n w,x[o, KL M,
.7 (My,M3) < (25 +a) ((Voln(Wh) + Vol (W2) + Volu_1(Wi) + Voly_1(Wa))
+ Vol,,,(My \ W;) + Vol,,(Mz \ W>),




Allen-Perales-Sormani VADB

Allen-Perales-Sormani: [arXiv:2003.01172]
M, VADB

My = M; X5 My

Defn: Volume Above Distance Below Conv: M; —— M

VADB
if Vol;(M;) = Volso(Ms) and 3D > 0 s.t. Diam(M;) < D
and 3 C! diffeomorphismi; : My, — M) such that

di(i(p), ¥j(q)) > doo(P,q) VP, q € Muo.



Allen-Perales-Sormani VADB

Allen-Perales-Sormani: [arXiv:2003.01172]
M; 208 v — M Y M.
. VADB
Defn: Volume Above Distance Below Conv: M; ——— My,
if Vol;(M;) = Volso(Ms) and 3D > 0 s.t. Diam(M;) < D
and 3 C! diffeomorphismi; : My, — M) such that

dj(¥(p): ¥i(q)) = dso(p, q) VP, q € Mw.

An earlier theorem that inspired us:
Hkq.'\J-Lec gs"'"’“"‘"[’. Given (M,dy) Ri

without by
A > 0, suppose that d; are length metrics on M such that
J g

dary and
> o) 1
do(p,q) — A
Then there exists a subsequence, also denoted dj, and a length metric d
such that d; converges uniformly to dx:
&j =sup {|d;(p,q) — doo(p, 9)|

p.ge X} —0.
and Mj converges in the intrinsic flat and Gromov-Hausdorff sense to M, :

M; 5 Mo and M; % M
where Mj = (M,d;) and My = (M, dx).



Allen-Perales-Sormani VADB Constructing Z

A (le'\‘P'N(e"g”"“"M.Lct M be an oriented, connected and closed manifold, M; =
(M, g;) and My = (M, go) be Riemannian manifolds with Diam(M;) < D,
Vol;(M;) <V and Fj : M; — My a C* diffeomorphism and distance non-
increasing map:

(120) dj(x,y) > do(Fj(x), Fj(y)) Va,y€ M;.

Let W C Mj be a measurable set and assume that there exists a d; > 0 so
that

(121) dj(z,y) < do(Fj(x), Fj(y)) +26;  Va,yeW;

with

(122) Vol,(M; \ W) < V;

and

(123) hj > /26;D + &3

then

(124) dr(Mo, M;) < 2V; + h;V.



Allen-Perales-Sormani VADB Constructing Z

R (le'\'P'f‘[e"g""""M.Let M be an oriented, connected and closed manifold, M; =
(M, g;) and My = (M, go) be Riemannian manifolds with Diam(M;) < D,
Vol;(M;) <V and Fj : M; — My a C* diffeomorphism and distance non-
increasing map:

(120) dj(x,y) > do(Fj(x), Fj(y)) Va,y€ M;.
Let Wj C M;j be a measurable set and assume that there exists a §; > 0 so
that
(121) dj(z,y) < do(Fj(x), Fj(y)) +26;  Va,yeW;
with
(122) Vol;(M; \ Wj) < V;
and
(123) hj > /26;D + &3
then
(124) dr(Mo, M;) < 2V; + h;V.
M. —_——
J
MO




Allen-Perales-Sormani VADB Constructing Z

A “e'\‘P'N(e"'Q""""M.Let M be an oriented, connected and closed manifold, M; =
(M, g;) and My = (M, go) be Riemannian manifolds with Diam(M;) < D,
Vol;(M;) <V and Fj : M; — My a C* diffeomorphism and distance non-
increasing map:

(120) ds(@,) 2 do(Fy(@), Fy(y)) Va,y € M;.

Let W C Mj be a measurable set and assume that there exists a d; > 0 so
that

(121) dj(e.y) < do(Fy(x). Fi(w) + 28, Va,yeW;

with

(122) Vol,(M; \ W) < V;

and

(123) hj > /26;D + &3

then

(124) dr (Mo, M;) < 2V + h;V.

M
AL

'2: [“S"Eo)k]
AL

M,

(o]

Z is M; glued along W; to M; x [0, h] glued along F;(W;) to Mp.



Allen-Sormani VADB to ptwise a.e. on M x M

Allen-Sornianc: If (M, g;) are compact continuous Riemannian manifolds
without boundary and (M, go) is a smooth Riemannian manifold such that

(85) gi(v,v) > go(v,v) Vv € T,M
and
(86) Vol (M) — Volo(M)

then there exists a subsequence such that

(87) lim d;(p,q) = do(p,q) pointwise a.e. (p,q) € M x M.
j—oo



Allen-Sormani VADB to ptwise a.e. on M x M

Flllev\— Sormianc: If (M, gj) are compact continuous Riemannian manifolds
without boundary and (M, go) is a smooth Riemannian manifold such that

(85) G0) > @(v,0)  VoeT,M
and
(86) Vol; (M) — Volo(M)

then there exists a subsequence such that

(87) lim d;(p,q) = do(p,q) pointwise a.e. (p,q) € M x M.
jooo

FIGURE 2. A tube T foliated by gg-geodesics, ~. with
L;(v) = Lo(y) has Vol;(T) = Volo(T) so Lj(v) — Lo(v)

for almost every « but not for v ending at a tip.
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for almost every « but not for v ending at a tip.

How to find a W C M controlling d(p, q) for all p,q € W?
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without boundary and (M, go) is a smooth Riemannian manifold such that
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and
(86) Vol; (M) — Volo(M)
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How to find a W C M controlling d(p, q) for all p,q € W?
Egoroff's Theorem?



Allen-Sormani VADB to ptwise a.e. on M x M

Flllev\— Sormianc: If (M, gj) are compact continuous Riemannian manifolds
without boundary and (M, go) is a smooth Riemannian manifold such that

(85) G0) > @(v,0)  VoeT,M
and
(86) Vol; (M) — Volo(M)

then there exists a subsequence such that

(87) lim d;(p,q) = do(p,q) pointwise a.e. (p,q) € M x M.
jooo

FIGURE 2. A tube T foliated by gg-geodesics, ~. with
L;(v) = Lo(y) has Vol;(T) = Volo(T) so Lj(v) — Lo(v)

for almost every « but not for v ending at a tip.

How to find a W C M controlling d(p, q) for all p,q € W?
Egoroff's Theorem? But Egoroff's Theorem only gives
aset S € M x M controlling d(p, q) uniformly ¥Y(p,q) € S...



Allen-Perales-Sormani Ptwise to Uniform on W Cc M

Now we apply Egoroft’s theorem to obtain uniform convergence on a set
of almost full measure.

Proposition - Under the hypotheses of Theorem for every e > 0
there exists a dvoly, x dvoly, measurable set, S C M x M, such that

(185) sup{|d;(p.q) — do(p,q)| : (p.q) € S:} =0-; =0,
(186) Voloxo(S:) > (1 — &) Voloxo(M x M).
and

(187) (p,q) € S: < (q.p) € Se.



Allen-Perales-Sormani Ptwise to Uniform on W Cc M

Now we apply Egoroff’s theorem to obtain uniform convergence on a set
of almost full measure.

Proposition - Under the hypotheses of Theorem [{.1] for every ¢ > 0
there exists a dvoly, x dvoly, measurable set, S C M x M, such that

(185) sup{|d;(p.q) — do(p,q)| : (p.q) € S:} =0-; =0,

(186) Voloxo(Se) > (1 =€) Voloxo(M x M).

and

{ge M : (p,q) € S},
tisfy

are dvoly, measurable and

Volo(Sp.e) dvol

(1 =€) Volg(M) < /

Jyerr Volg(A) T




Allen-Perales-Sormani Ptwise to Uniform on W Cc M

Now we apply Egoroff’s theorem to obtain uniform convergence on a set
of almost full measure.

Proposition - Under the hypotheses of Theorem 4.1, for every e > 0
there exists a dvoly, x dvoly, measurable set, S C M x M, such that

(185) sup{|d;(p.q) — do(p,q)| : (p,q) € S:} =6.; =0,

(186) Volyxo(S:) > (1 — &) Volgxo(M x M).
and

Spe={q€M : (p.q) € S},

measurable and satisfy

(1 =€) Volg(M) < /

are dvol,,

Volo(Spe)

Jperr Volo(M) 90

Lemma ‘- © ForW,, =&p © Vo, (sp.e) > (1-KE) Vol (H\g

K-

Voly(W:) > ! Voly(M).

and |dj(p,q) — do(p, q)| < 0-j Vp,q€ Wk,



Allen-Perales-Sormani VADB to V.F is Proven
For W, 12-]’ : Vo'a (:F,EB ? ([*.'(L‘)Uo(o (h\i

Lemma

k—1

VUlg(WKE) > VOlg(ﬂ[)

and |dj(p, q) — do(p, q)| < e Vp,q € Wik,
combined with our estimate on SWIF:
R “e"'P"“[e"'g”""““'lt.Lct M be an oriented, connected and closed manifold, M; =
(M, g;) and My = (M, go) be Riemannian manifolds with Diam(M;) < D,

Vol;(M;) <V and Fj : M; — My a C' diffeomorphism and distance non-
increasing map:

(120) dj(x,y) > do(Fj(z),Fj(y)) VYax,y € M;.

Let W; C Mj be a measurable set and assume that there exists a §; > 0 so
that

(121) dj(x.y) < do(Fy(a), Fy(y)) + 26,  VayeW;

with

(122) Vol (M; \ W;) < V;

and

(123) hy > /26D +362

then

(124) dr (Mo, Mj) < 2V; + h;V.

completes the proof of M; VADB, My = M; Yr, M. O



SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:



SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an
integer rectifiable current s.t. T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise
disjoint biLip charts ¢; : A; — ;(A;) C Z and weights a; € Z s.t.

T(f, Ty ey Tm) = Za;/ (fop)d(mop)A---ANd(mmo )
i=1 A

with mass M(T) = || T||(Z) where || T|| = X0 (HmLsetT) and
set(T)={ze Z| lim igf | T|I(B(z,r))/r™ > 0}.
r—
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SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an
integer rectifiable current s.t. T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise
disjoint biLip charts ¢; : A; — ;(A;) C Z and weights a; € Z s.t.

T(f, Ty ey Tm) = Za;/ (fop)d(mop)A---ANd(mmo )
i=1 A

with mass M(T) = || T||(Z) where || T|| = X0 (HmLsetT) and
set(T)={ze Z| lim igf | T|I(B(z,r))/r™ > 0}.
r—

Key ldea: Integral currents generalize oriented submanifolds in 2.
Key New ldea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X, d, T)
is a metric space (X, d) and integral current T s.t. set(T) = X.



SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an
integer rectifiable current s.t. T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise
disjoint biLip charts ¢; : A; — ;(A;) C Z and weights a; € Z s.t.

T(f, Ty ey Tm) = Za;/ (fop)d(mop)A---ANd(mmo )
i=1 A

with mass M(T) = || T||(Z) where || T|| = X0 (HmLsetT) and
set(T)={ze Z| lim igf | T|I(B(z,r))/r™ > 0}.
r—

Key ldea: Integral currents generalize oriented submanifolds in 2.
Key New ldea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X, d, T)
is a metric space (X, d) and integral current T s.t. set(T) = X.
Furthermore: M(M) = M(T) and OM = (set(0T),d,0T).



SWIF limits are Integral Current Spaces
Recall Flat limits of oriented submanifolds are integral currents:
Ambrosio-Kirchheim (2000): an integral current, T, on Z is an
integer rectifiable current s.t. T is also integer rectifiable.
Defn: an integer rectifiable current, T, has cntbly many pairwise
disjoint biLip charts ¢; : A; — ;(A;) C Z and weights a; € Z s.t.

T(f, Ty ey Tm) = Za;/ (fop)d(mop)A---ANd(mmo )
i=1 A

with mass M(T) = || T||(Z) where || T|| =0 (HmLsetT) and
set(T)={ze Z] lim i(r)n‘ [|T||(B(z,r))/r™ > 0}.
r—

Key ldea: Integral currents generalize oriented submanifolds in 2.
Key New ldea: generalize oriented Riemannian Manifolds.
Sormani-Wenger Defn: An integral current space M = (X,d, T)
is a metric space (X, d) and integral current T s.t. set(T) = X.
Furthermore: M(M) = M(T) and OM = (set(0T),d,0T).

Thus X is cntbly " rectifiable: it has cntbly many pairwise
disjoint Lip charts ¢; : Aj — X s.t. H™ (X \ U2, wi(Ai)) = 0.
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So it has a countable collection of biLipschitz charts
that are oriented and weighted by 6 : M — Z
The mass M(U) = || T||(U) has || T|| = 0 XH™.
[t might not be connected and might not have any geodesics.
Its boundary is OM = (set(0T),d,dT).
A compact oriented manifold (M™, g) is an integral current space
(M, du, [[M]]) with weight § = 1 and M(U) = Vol(U) = H™(U).
Its boundary (OM, dp, [[OM]]) has the restricted distance dp.
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between integral current spaces M = (X;, d;, T;) is:

dswir(M{", M3") = inf{dE (1 T, 021 T2) | i : M" — Z}

where o T(f,m1,...;7mm) = T(fop,mop, ..., mm o), and
where the infimum is taken over all complete metric spaces, Z,
and over all distance preserving maps ; : M" — Z.

Here: d,_Z (p14 T1, pos T2) is the Federer-Fleming Flat dist
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Implications of SWIF Convergence [SW-JDG|

Defn: For any pair of integral current spaces,
dswir(My{", M3") = inf{dE (P15 T1, 024 T2) | 0i - M — Z}
where the inf over complete Z and dist. pres. ¢; : M/" — Z.

Thm: The infimum is achieved, so we can choose
7' = set(A) Uset(B) which is separable and rectifiable.
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Implications of SWIF Convergence [SW-JDG|

Defn: For any pair of integral current spaces,

dswir(M{", M3") = inf{dE (01 T1, 024 T2) | 0i = M — Z}
where the inf over complete Z and dist. pres. ¢; : M/" — Z.
Thm: The infimum is achieved, so we can choose

Z" = set(A) U set(B) which is separable and rectifiable.

Thm: If M; = (X, dj, Tj) 225 Mo = (Xo, do, To)

3 complete separable Z and dist. pres. ¢; : X; — Z
s.t. d,_Z(ng# Tj, o4 T()) — 0 and Pi# Tj(w) — Po# To(w).
Thus by Ambrosio-Kirchheim Theory:

Mj SWIF My — an SWIF 3/\400

M; SWIF, My = liminf;_,oc M(M;) > M(M,)

Thm [Sor-ArzAsc]: For any p € My, there exists p; € M; s.t.
dz(¢i(pj), po(p)) — 0.



Arzela-Ascoli Theorem

Theorem rsc' At ﬁSC] Suppose M; = (X;,d,, T;) are integral current

spaces fori € {1,2,...,00} and M; ir M, and F; : X; — W are Lipschitz
maps into a compact metric space W with

(188) Lip(Fi) < K,
then a subsequence converges to a Lipschitz map F o : Xeo — W with
(189) Lip(Fs) £ K.

More specifically, there exists isometric embeddings of the subsequence,
@i : Xi = Z, such that dﬁ(«pm Ti, ¢t Te) = 0 and for any sequence p; € X;
converging to p € X,

(190) dz(¢i(p). ¢«(p)) = 0,

one has converging images,

(191) dw(Fi(p). Fu(p)) — 0.



Balls and SWIF Limits [Sormani-ArzAsc]:
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Thm: If B(p,r) is a ball in an integral current space M then

(B(p, r), dm, [[B(p, r)]]) is an integral current space for a.e. r > 0.

Thm [SW]: If M; = (X;, dj, Tj) % My = (xo, do, To)

3 complete separable Z and dist. pres. ¢; : X; — Z such that
d,_Z(ng# TJ', Po# Tg) — 0 and i Tj(w) — Po# To(w).

Thm: If py € Mg and M; 255 My, then
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Thm: If M7 25 Mgye # 0™ then 3N; C M; such that

N; E Mswir and liminfj_eo M(N;) > M(Msyyr).
The proofs of the above use the Ambrosio-Kirchheim Slicing Thm.
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Given Lipschitz, f : Z — R, and integral current, T, for a.e. s€ R
one can define the slice of T by f at s which is an integral current

< T,f,s>=-0(TLf !(s,00)) +(0T) Lf (s,00),

where S restricted to U is (SL U)(h, m1,...) = S(xu - h, 71, ...).

oT

4

To prove it is an integral current, they prove its mass and the mass
of < T,f,s >=< —0T,f,s > is finite for a.e. s € R. In fact:

M(< T,f,s>)ds = M(T L df) < Lip(f)M(T)
seR

where (T Ldf)(h, 71, .cc,mm—1) = T(h, f, 71, ..Tm—1)-
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then we have 71 — T, = A+ 9B
where d#(T1, T2) = M(A) + M(B).
< Ti,f,s> — <Tr,fis>=<Af,s>+ <0IB,f,s >
<Ti,f,s> — < Trfis>=<Af,s>—-0<B,f,s>
dZ(< T1,f,s >, < To,f,s >) < M(< A, f,s >) + M(< B, f,s >)

Since
M(< A, f,s >)ds < Lip(f) M(A)
seR
and
M(< B, f,s >)ds < Lip(f) M(B)
s€R
we have,

/ dZ(< T, f,s >, < To 5 >) ds < Lip(F)(M(A) + M(B))
seR

/ df(< T1,f,s>,< To,f,s >)ds < Lip(f)dZ(Ty, T2)
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Convergence of Slices
If d(Tj, Too) = 0 and f : Z — R has Lip(f) < 1 then

/ df(< Tj,f,s >,< Too,f,s >)ds — 0.
seR

So a.e. s € R I subseq s.t. dZ(< Tj,f,s >, < T, f,s>) = 0.

What about slices of converging integral current spaces

where Slice((X,d, T),f,s) = (set(< T,f,s >),d, < T,f,s>)?

(Xj,d;, Tj) SWIF, (X0, doo, Too) implies

3Z and p; : X; — Z s.t. d/_g(ﬁpj#'l'jﬂpoo# Too) — 0.

Taking f; = f o ¢; we get subseq of sliced spaces for a.e. s € R:
SWIF

Slice(M;, fj, s) —— Slice(Mxo, fso, Sc0)-
Portegies-Sormani: (after significant work) M; SWIF, M.

and p; € M; converges to p,, € M, then a.e. s € R:

a subseq Slice(M;, pp;, s) SWIF, Slice(Mss, pp..., Soc)

So B(pj,s) ~ B(poc, 5) and B(pj,s) - OB(psc, s).

[PS] also define a sliced filling volume and estimate.it.
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Portegies-Sormani: (from last slide) M; —— M

and p; € M; converges to p,, € M, then a.e. s € R:

a subseq Slice(M;, pp;, s) SWIF, Slice(Mss, ppos > Soc)-

So B(pj, s) SWIF, B(p,s) and 9B(pj, s) SWIF, 0B(p, S).

So liminf;_,oc M(B(p;j,s)) > M(B(p,s)) and
liminf;_oc M(0B(p;j,s)) > M(0B(ps, 5)).

. I VF
Volume Preserving Intrinsic Flat Convergence M; — M:

M Y M and limj o0 M(M;) = M(M0).

This implies M(M) > liminf;_,.. M(M;)
> lim infj_wo M(Bj) + lim infj_>oo M(Mj \ Bj)
= M(Boo) + M(Moo \ Boo): M(Moo)
So all are equality and so lim;_,.c M(B(p;j,r)) = M(B(psc, r).
Portegies a la Fukaya: control eigenvalues of the spaces:
lim SupjHOO )\k(Mj) — )\k(Moo)
Jauregui-Lee prove areas of certain surfaces converge
by studying the integrals of the masses of slices.
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For GH limits, Gromov proved midpoints converged to midpoints,
but for SWIF limits midpoints might disappear....
Given p,q € M, 3pj, qj € M; converging to p, g.
Taking x; to be a midpoint between p; and g,
can we show FillVol(B(x;,r)) > Cy par’? OPEN.
We must use x; a midpoint because other points can disappear.
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can we show FillVol(B(x;,r)) > Cy par’? OPEN.
We must use x; a midpoint because other points can disappear.
Perhaps use sliced filling volumes with f;(-) = d;(-, pj)?
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IAS Emerging Topic Conjecture: Tan Cones

Suppose I\/lj3 have VoI(Mﬁ) <V and Diam(l\/lj3) <D

SWIF
So a subsequence M; —— M.

Conjecture: If in addition we have Scalar; > 0 and MinA; > A
where MinA; = min{Area(X) : closed min surfaces ¥ C l\/lj3}
Then M, has generalized “Scalar > 0"

Furthermore: we believe that we have M; Y7, My, where
My is a connected length space with Euclidean tangent cones.
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Then M, has generalized “Scalar > 0"

Furthermore: we believe that we have M; Y7, My, where
My is a connected length space with Euclidean tangent cones.



IAS Emerging Topic Conjecture: Tan Cones
Suppose I\/IJ3 have VoI(Mj3) <V and Diam(l\/lj3) <D

So a subsequence M; S M.

Conjecture: If in addition we have Scalar; > 0 and MinA; > A
where MinA; = min{Area(X) : closed min surfaces ¥ C /\/If}
Then M, has generalized “Scalar > 0"

Furthermore: we believe that we have M; E) My, where
My is a connected length space with Euclidean tangent cones.
How would we prove the tangent cones are Euclidean?



IAS Emerging Topic Conjecture: Tan Cones
Suppose Mj3 have VoI(Mﬁ) <V and Diam(Mf) <D

So a subsequence M; S M.

Conjecture: If in addition we have Scalar; > 0 and MinA; > A
where MinA; = min{Area(X) : closed min surfaces ¥ C Mj3}
Then M, has generalized "Scalar > 0"

Furthermore: we believe that we have M; i My, where
My is a connected length space with Euclidean tangent cones.
How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. p € M,

there is a tangent cone, T,M, which is a normed vector space:

(B(p, i), d /. [[B(p, r)]l) = B(0,1) € T,M.



IAS Emerging Topic Conjecture: Tan Cones
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So a subsequence M; oW M.

Conjecture: If in addition we have Scalar; > 0 and MinA; > A
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My is a connected length space with Euclidean tangent cones.
How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. p € M,

there is a tangent cone, T,M, which is a normed vector space:

(B(p, i), d/r. [[B(p, r)]l) = B(0,1) € T,M.

So perhaps we could use geometric stability of a rigidity theorem
that implies a ball is a Euclidean ball to prove this.
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(B(p, i), d/r. [[B(p, r)]l) = B(0,1) € T,M.

So perhaps we could use geometric stability of a rigidity theorem
that implies a ball is a Euclidean ball to prove this.
Note that A(p) = 1 if T,M is Euclidean, so || Too|| =1 -6 - H3.
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So perhaps we could use geometric stability of a rigidity theorem
that implies a ball is a Euclidean ball to prove this.

Note that A(p) = 1 if T,M is Euclidean, so || Tso|| =1 -6 - H5.
Conjecture: the weight 6 = 1.



IAS Emerging Topic Conjecture: Tan Cones
Suppose Mj3 have VoI(Mj3) <V and Diam(Mf) <D

So a subsequence M; oW M.

Conjecture: If in addition we have Scalar; > 0 and MinA; > A
where MinA; = min{Area(X) : closed min surfaces ¥ C Mﬁ}»
Then M, has generalized “Scalar > Q"

Furthermore: we believe that we have M; i My, where
My is a connected length space with Euclidean tangent cones.
How would we prove the tangent cones are Euclidean?

By Ambrosio-Kirchheim theory, we know that at a.e. p € M,

there is a tangent cone, T,M, which is a normed vector space:

(B(p, i), d/r. [[B(p, r)]l) = B(0,1) € T,M.

So perhaps we could use geometric stability of a rigidity theorem
that implies a ball is a Euclidean ball to prove this.

Note that A(p) = 1 if T,M is Euclidean, so || Too|| =1 -6 - H3.
Conjecture: the weight = 1. So || Too|| = H5.

Open: Prove || To|| = H3. (Ricci case by Colding " Volumes....).



