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Plan of the journey

» Curvature and convergence of Smooth Riemannian manifolds.

» Ricci Curvature for non-smooth spaces: the
CD(K,N), CD*(K,N),RCD(K, N), RCD*(K, N) conditions.
> Analytic and geometric properties of CD and RCD spaces.

> Applications to smooth Riemannian manifolds.



Gaussian curvature of 2-dimensional surfaces

> Let (X, g) be a 2-dimensional Riemannian surface. Denote by
V the Levi-Civita connection on (X, g).

> Fix pe X, and & = %, &, = % coordinate basis of T,3.

» The Gaussian Curvature K(%g)(p) of (X, g) at p is defined by

& ((Ve Ve ~ Ve Ve)e. §))
det(gp)

Ks (p) ==

> If (L, g) C R3 is isometrically immersed, then
K(Gzyg)(p) = product of the principal curvatures at p
= Jacobian of the Gauss map at p.

> Examples:

» 0 = Gaussian curvature of the Euclidean plane R?.

> r_12 = Gaussian curvature of a 2-dimensional round sphere in R3

of radius r.
» —1 = Gaussian curvature of the Hyperbolic plane:

half plane {(x,y) : y > 0} with metric ds? = —rdxz;rdyz



Sectional and Ricci Curvature Riemannian manifolds

> Let (M", g) be an n-dimensional Riemannian manifold.

» Fix p € M and span(ét, &) =1 C T,M a 2-dim subspace.
> Let 2 = Exp,(M N B:(0))=surface obtamed by considering
all the geodesics starting at p tangent to [1 up to length €.

For € > 0 small enough ¥ C M is a smooth 2-dim surface.
» Define the Sectional Curvature of (M, g) at the 2-dim plane
span(éj, &) =M C T,M as

Secp(€1, &) = Kzn(P) = Gaussian curvature of X at p.

» Define the Ricci Curvature of (M, g) at the vector v e T,M
as
n—1
s ooy o2 N
Ricy(V, V) = |V| Z Secp(V, €)" = trace of the curvature
i=1

Z

where {é1,...,€,_1,V/|V} is an orthonormal basis of
(ToM, gp).



Some notational remarks on the curvature bounds

Let (M", g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.

» For K € R, we write Sec > K (resp. < K) if for every p € M
and every 2-dim plane I C T,M it holds
Secp (M) > K (resp. < K).

» Ricp : ToM x T,M — R is a quadratic form. We write
Ric > K (resp. < K) if the quadratic form Ric, — Kgp, is
non-negative (resp. non-positive) definite at every p € M.

» Examples (model spaces):

» n-dimensional Euclidean space: Sec = 0, Ric = 0.
» n-dimensional round sphere of radius 1: Sec =1, Ric=n—1.
» n-dimensional Hyperbolic space: Sec = —1, Ric = —(n—1).



Some basics of comparison geometry

Question: (M, g) smooth Riemannian manifold.
If we assume some upper/lower bounds on the sectional or on the
Ricci curvature what can we say on the analysis/geometry of

(M,g)?

» Upper/Lower bounds on the sectional curvature are strong
assumptions with strong implications E.g. Cartan-Hadamard
Theorem (if Sec < 0 then the universal cover of M is
diffeomorphic to RN), Topogonov triangle comparison
theorem(~~ definition of Alexandrov spaces: non smooth
spaces with upper/lower bounds on the " sectional
curvature”), etc.

» Upper bounds on the Ricci curvature are very (too) weak
assumptions for geometric conclusions. E.g. Lokhamp
Theorem (Gao-Yau, Brooks in dim 3): any closed manifold of
dim> 3 carries a metric with negative Ricci curvature.



Some basics of comparison geometry: lower Ricci bounds

Lower bounds on the Ricci curvature: a natural framework for
comparison geometry (from below)

» Bishop-Gromov volume comparison: (not most general form)
If (M", g) has Ric > 0 then for all x € M

volg(Br(x))

R —
wpR"

is monotone non-increasing

In particular, since — 1 as R — 0 ~» volg(Bgr(x)) < waR".
Laplacian comparison,

Cheeger-Gromoll splitting,

Li-Yau inequalities on heat flow,

Lévy-Gromov isoperimetric inequality,

vVvYyyVvyy



Non smooth setting: Origins of the topic

Gromov in the '80ies

> introduced a notion of convergence for Riemannian manifolds,
known as Gromov-Hausdorff convergence (for non-compact
manifolds, more convenient a pointed version, called pointed
Gromov-Hausdorff convergence ~~ GH-convergence of metric
balls of every fixed radius)

> observed that a sequence of Riemannian n-dimensional
manifolds satisfying a uniform Ricci curvature lower bound is
precompact, i.e. it converges up to subsequences to a possibly
non-smooth limit space (called, from now on, Ricci limit
space)

e Natural question: what can we say about the compactification of
the space of Riemannian manifolds with Ricci curvature bounded
below (by, say, minus one)?

eHope: useful also to establish properties for smooth manifolds.



Semi-smooth setting

Ricci limits can have singularities (e.g. a cone, the boundary of a
convex body in R") which can be dense.

» Cheeger-Colding 1997-2000 three fundamental papers on JDG
on the structure of Ricci limit spaces.

> Collapsing: limy volg, (B1(Xk)) = 0 ~~ loss of dimension in the
limit. More difficult, nevertheless they proved that the limit
space has a uniquely defined volume measure (up to scaling)
and a.e. point has a Euclidean tangent space (a priori, the
dimension may vary from point to point). Such points are
called regular points, the complementary is called singular set.

> Non collapsing: liminfy volg, (B1(Xk)) > 0. More results: the
Hausdorff dimension passes to the limit, one can prove finer
estimates on the singular set, e.g. Haudorff codimension 2.

» Colding-Naber, Annals of Math. 2012: the dimension of the
tangent space does not change on the regular set, even in the
collapsed case.

» Cheeger-Jiang-Naber, Annals of Math. 2021: rectifiability of
the singular set in the non-collapsed case.



Extrinsic Vs Intrinsic

» The aforementioned approach to Ricci curvature for
non-smooth spaces is a non-intrinsic point of view: consider
the non smooth spaces arising as limits of smooth objects.
Dichotomy collapsing-non collapsing. Very powerful for
structural properties.

» Analogy: like defining W12 as completion of C> endowed
with W12-norm.

» But W12 can be defined also in completely intrinsic way
without passing via approximations (very convenient for doing
calculus of variations).

» GOAL: define in an intrisic-axiomatic way a non smooth space
with Ricci curvature bounded below by K and dimension
bounded above by N (containing Ricci limits no matter if
collapsed or not).
~~ weak version of a Riemannian manifold with Ric> K;
analogy with GMT (currents, varifolds,etc.)



Preliminary Observation

P sectional curvature bounds for non smooth spaces make
perfect sense in metric spaces (X, d) (Alexandrov spaces):
sectional curvature is a property of lengths (comparison
triangles)

> Ricci curvature is a property of lenghts and volumes: needs
also a reference volume measure
~> natural setting metric measure spaces (X, d, m).



Non smooth setting 1: the Kantorovich-Wasserstein space

Notations:

> (X,d, m) complete separable metric space with a o-finite
non-negative Borel measure m (more precisely
m(B,(x)) < ce?” for some A, ¢ > 0); if we fix a point X € X,
(X,d, m, X) denotes the corresponding pointed space.

> Let

Po0) = {502 0, ) =1, [ (%) ulas) < oo

=Probability measures with finite second moment.
> Given 1, 2 € Po(X), define the (Kantorovich-Wasserstein)
quadratic transportation distance

W3 p) =i { [ ) (e}

where v € P(X x X) with (m;)yy = pj, i = 1,2
> (Pa2(X), W) is a metric space, geodesic if (X,d) is geodesic



Non smooth setting 2: Entropy functionals

On the metric space (P2(X), W) consider the following Entropy
functionals.

» For N € (1,00], let Up (1) defined as follows: if

p=pmLm
Unm(pm) = —N/pll%ldm if 1 <N < oo Rényi Entropy
Usom(pm) = /plogpdm Bolzmann-Shannon Entropy

> if pis not a.c. then if N < oo the non a.c. part does not
contribute, if N = 400 then set Uoo m (1) = 00.
» Such entropy functionals show up (and actually were

introduced) in statistical mechanics, thermodynamics,
information theory, etc.



Non smooth setting: intrinsic-axiomatic definition. 2

» Crucial observation

[CorderoErausquin-McCann-Schmuckenshlager '01,
Otto-Villani '00, Sturm-Von Renesse '05]

If (X,d, m) is a smooth Riemannian manifold (M, g), then
Ric > 0 (resp. > K) iff the entropy functional Uso m is
(K-)convex along geodesics in (P2(X), Wa). i.e. for every
pos 1 € P2(X) there exists a Wa-geodesic (uut)tefo,1) such
that for every t € [0, 1] it holds

K
Uscin(pe) < (1= 0o m(110)-+ tUoe m(1i3) — 5 H(1—1) Walpio, pr )2

Notice that the notion of (K-)convexity of the Entropy makes
sense in a general metric measure space (X,d, m).

DEF of CD(K, N) condition [Lott-Sturm-Villani '06]: fixed

N € [1,400] and K € R, (X,d, m) is a CD(K, N)-space if the
Entropy Un m is K-convex along geodesics in (P2(X), W-)
(for finite N is a “distorted” (K, N)-geod. conv.).



Non smooth setting: intrinsic-axiomatic definition. 3

Keep in mind:

- CD(K, N) ~~ definition Ricci curvature > K and dimension < N
in an intrinsic/axiomatic way for metric measure spaces

- the more convex is Uy along geodesics in (Pr(X), W), the
more the space is positively Ricci curved.

Good properties:

» CONSISTENT: (M, g) satisfies CD(K, N) iff Ric > K and
dim(M) < N

» GEOMETRIC PROPERTIES: Brunn-Minkoswski inequality,
Bishop-Gromov volume growth, Bonnet-Myers diameter
bound, Lichnerowictz spectral gap, etc.

» STABLE under convergence of metric measure spaces?
RK: stability will imply that Ricci limits are CD spaces.



Stability of CD(K, N), 1: Lott-Villani Vs Sturm

» Framework of proper spaces (i.e. bounded closed sets are

compact), Lott-Villani: CD(K, N) is stable under pointed
measured Gromov-Hausdorff convergence (i.e. for every R > 0
there is measured Gromov-Hausdorff convergence of balls of
radius R around the given points of the space)

Framework of probability spaces with finite variance (i.e.
m € P»(X)): Sturm defined a distance (also known as
Gromov-Wasserstein in the literature)

D ((Xl, dl,ml), (XQ, dz,mg)) = inf W2 ((Ll)ﬁml, (Lz)ﬁmg) s

inf among all metric spaces (Z,dz) and all isometric
embeddings ¢;(supp(m;),d;) — (Z,dz), i = 1,2. He then
proved that CD(K, N) is stable w.r.t. D-convergence.



Stability of CD(K, N), 2: not satisfactory for N = oo

>

>

CD(K, N), for N < oo implies properness of X, so Lott-Villani
fully covers the situation.

CD(K, o) does not imply any sort of compactness, not even
local, so pmGH-convergence is quite unnatural. At least for
normalized spaces with finite variance Sturm's approach
covers the situation.

In some geometric situations, the assumption that m € P»(X)
is a bit too restrictive: e.g. when studying blow ups (i.e.
tangent cone at a point ~» Cheeger,Colding,Naber) and blow
downs (i.e. tangent cones at infinity ~ Cheeger, Colding,
Minicozzi, Tian, etc. )

One may also like to consider sequences of non compact
manifolds with diverging dimensions or more generally
sequences of spaces with diverging doubling constants.

Q:1) What is a natural notion of convergence in these situations?
2) Is CD(K, o0) stable w.r.t. this notion?



Pointed measured Gromov (pmG for short) convergence

DEF:(Gigli-M.-Savaré) (X,,dn, mp, Xn) — (Xoo, doos Moo, Xoo) N
pmG-sense if there exist a complete and sepaEabIe space (Z,d;)
and isometric embeddings ¢, : X, = Z, n € N :=NU {co} s.t.

/(p(L,,)ﬁm,, — /go(Loo)ﬁmoo, Vo € Cps(Z), where
Cps(Z) :={f : Z — R cont., bounded with bounded support }.

> The definition above is extrinsic but we prove it can be
characterized in a (maybe less immediate) totally intrinsic
way, according various equivalent approaches (via a pointed
version of Gromov reconstruction Theorem or via a
pointed /weighted version of Sturm's D-distance).

» On doubling spaces pmG-convergence above is equivalent to
mGH-convergence (~+ consistent with Lott-Villani).

» On normalized spaces of finite variance pmG-convergence is
equivalent to D-convergence (~~ consistent with Sturm).

» pmG-convergence no a priori assumption on (X,,dp, mp).



CD(K, o0) is stable under pmG-convergence

THM(Gigli-M.-Savaré ): Let (Xp,dn, my, X,), n € N, be a sequence
of CD(K,00) p.m.m. spaces converging to (Xso, doo, Mao, Xoo ) iN
the pmG-sense. Then (X, doo, Moo ) is @ CD(K, 00) space as well.

Rough sketch of Proof (Borrowed from Lott-Sturm-Villani):

1. Prove '-convergence of Uy, m under pmG-convergence:
» “I' — liminf inequality”: For every u™ € P»(Xs) and every
1" € Po(X,) such that p" — > weakly in Z, it holds that

Uso,m (17 Moo) < liminf Usg m (1" |mp).
n—oo

> ‘“Existence of a recovery sequence”: For every u> € P(Xoo)
there exist 1" € P2(X,) such that p" — p weakly in Z and

Uso,m (17| Moo) > lim supUog m (1" M)

n—oo
2. Use the compactness of m,, to prove compactness of
Wasserstein-geodesics in the converging spaces
3. Conclude that K-geodesic convexity is preserved.



