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Plan of the journey

I Curvature and convergence of Smooth Riemannian manifolds.

I Ricci Curvature for non-smooth spaces: the
CD(K ,N),CD∗(K ,N),RCD(K ,N),RCD∗(K ,N) conditions.

I Analytic and geometric properties of CD and RCD spaces.

I Applications to smooth Riemannian manifolds.



Gaussian curvature of 2-dimensional surfaces

I Let (Σ, g) be a 2-dimensional Riemannian surface. Denote by
∇ the Levi-Civita connection on (Σ, g).

I Fix p ∈ Σ, and ~ex = ∂
∂x , ~ey = ∂

∂y coordinate basis of TpΣ.

I The Gaussian Curvature KG
(Σ,g)(p) of (Σ, g) at p is defined by

KG
Σ (p) :=

gp
(

(∇~ey∇~ex −∇~ex∇~ey )~ex , ~ey
)

det(gp)

I If (Σ, g) ⊂ R3 is isometrically immersed, then
KG

(Σ,g)(p) = product of the principal curvatures at p
= Jacobian of the Gauss map at p.

I Examples:
I 0 ≡ Gaussian curvature of the Euclidean plane R2.
I 1

r2 ≡ Gaussian curvature of a 2-dimensional round sphere in R3

of radius r .
I −1 ≡ Gaussian curvature of the Hyperbolic plane:

half plane {(x , y) : y > 0} with metric ds2 = dx2+dy2

y2



Sectional and Ricci Curvature Riemannian manifolds

I Let (Mn, g) be an n-dimensional Riemannian manifold.
I Fix p ∈ M and span(~e1, ~e2) = Π ⊂ TpM a 2-dim subspace.
I Let ΣΠ = Expp(Π ∩ Bε(0))=surface obtained by considering

all the geodesics starting at p tangent to Π up to length ε.
For ε > 0 small enough ΣΠ ⊂ M is a smooth 2-dim surface.

I Define the Sectional Curvature of (M, g) at the 2-dim plane
span(~e1, ~e2) = Π ⊂ TpM as

Secp(~e1, ~e2) = KG
ΣΠ

(p) = Gaussian curvature of ΣΠ at p.

I Define the Ricci Curvature of (M, g) at the vector ~v ∈ TpM
as

Ricp(~v , ~v) = |~v |2
n−1∑
i=1

Secp(~v , ~ei )“ = trace of the curvature′′

where {~e1, . . . , ~en−1, ~v/|~v} is an orthonormal basis of
(TpM, gp).



Some notational remarks on the curvature bounds

Let (Mn, g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.

I For K ∈ R, we write Sec ≥ K (resp. ≤ K ) if for every p ∈ M
and every 2-dim plane Π ⊂ TpM it holds
Secp(Π) ≥ K (resp. ≤ K ).

I Ricp : TpM × TpM → R is a quadratic form. We write
Ric ≥ K (resp. ≤ K ) if the quadratic form Ricp − Kgp is
non-negative (resp. non-positive) definite at every p ∈ M.

I Examples (model spaces):
I n-dimensional Euclidean space: Sec ≡ 0, Ric ≡ 0.
I n-dimensional round sphere of radius 1: Sec ≡ 1, Ric ≡ n − 1.
I n-dimensional Hyperbolic space: Sec ≡ −1, Ric ≡ −(n − 1).



Some basics of comparison geometry

Question: (M, g) smooth Riemannian manifold.
If we assume some upper/lower bounds on the sectional or on the
Ricci curvature what can we say on the analysis/geometry of
(M, g)?

I Upper/Lower bounds on the sectional curvature are strong
assumptions with strong implications E.g. Cartan-Hadamard
Theorem (if Sec ≤ 0 then the universal cover of M is
diffeomorphic to RN), Topogonov triangle comparison
theorem( definition of Alexandrov spaces: non smooth
spaces with upper/lower bounds on the ”sectional
curvature”), etc.

I Upper bounds on the Ricci curvature are very (too) weak
assumptions for geometric conclusions. E.g. Lokhamp
Theorem (Gao-Yau, Brooks in dim 3): any closed manifold of
dim≥ 3 carries a metric with negative Ricci curvature.



Some basics of comparison geometry: lower Ricci bounds

Lower bounds on the Ricci curvature: a natural framework for
comparison geometry (from below)

I Bishop-Gromov volume comparison: (not most general form)
If (Mn, g) has Ric ≥ 0 then for all x ∈ M

R 7→ volg(BR(x))

ωnRn
is monotone non-increasing

In particular, since → 1 as R → 0  volg(BR(x)) ≤ ωnR
n.

I Laplacian comparison,

I Cheeger-Gromoll splitting,

I Li-Yau inequalities on heat flow,

I Lévy-Gromov isoperimetric inequality,

I . . .



Non smooth setting: Origins of the topic

Gromov in the ’80ies

I introduced a notion of convergence for Riemannian manifolds,
known as Gromov-Hausdorff convergence (for non-compact
manifolds, more convenient a pointed version, called pointed
Gromov-Hausdorff convergence  GH-convergence of metric
balls of every fixed radius)

I observed that a sequence of Riemannian n-dimensional
manifolds satisfying a uniform Ricci curvature lower bound is
precompact, i.e. it converges up to subsequences to a possibly
non-smooth limit space (called, from now on, Ricci limit
space)

• Natural question: what can we say about the compactification of
the space of Riemannian manifolds with Ricci curvature bounded
below (by, say, minus one)?
•Hope: useful also to establish properties for smooth manifolds.



Semi-smooth setting

Ricci limits can have singularities (e.g. a cone, the boundary of a
convex body in Rn) which can be dense.

I Cheeger-Colding 1997-2000 three fundamental papers on JDG
on the structure of Ricci limit spaces.
I Collapsing: limk volgk (B1(x̄k)) = 0  loss of dimension in the

limit. More difficult, nevertheless they proved that the limit
space has a uniquely defined volume measure (up to scaling)
and a.e. point has a Euclidean tangent space (a priori, the
dimension may vary from point to point). Such points are
called regular points, the complementary is called singular set.

I Non collapsing: lim infk volgk (B1(x̄k)) > 0. More results: the
Hausdorff dimension passes to the limit, one can prove finer
estimates on the singular set, e.g. Haudorff codimension 2.

I Colding-Naber, Annals of Math. 2012: the dimension of the
tangent space does not change on the regular set, even in the
collapsed case.

I Cheeger-Jiang-Naber, Annals of Math. 2021: rectifiability of
the singular set in the non-collapsed case.



Extrinsic Vs Intrinsic

I The aforementioned approach to Ricci curvature for
non-smooth spaces is a non-intrinsic point of view: consider
the non smooth spaces arising as limits of smooth objects.
Dichotomy collapsing-non collapsing. Very powerful for
structural properties.

I Analogy: like defining W 1,2 as completion of C∞ endowed
with W 1,2-norm.

I But W 1,2 can be defined also in completely intrinsic way
without passing via approximations (very convenient for doing
calculus of variations).

I GOAL: define in an intrisic-axiomatic way a non smooth space
with Ricci curvature bounded below by K and dimension
bounded above by N (containing Ricci limits no matter if
collapsed or not).
 weak version of a Riemannian manifold with Ric≥ K ;
analogy with GMT (currents, varifolds,etc.)



Preliminary Observation

I sectional curvature bounds for non smooth spaces make
perfect sense in metric spaces (X , d) (Alexandrov spaces):
sectional curvature is a property of lengths (comparison
triangles)

I Ricci curvature is a property of lenghts and volumes: needs
also a reference volume measure
 natural setting metric measure spaces (X , d,m).



Non smooth setting 1: the Kantorovich-Wasserstein space

Notations:

I (X , d,m) complete separable metric space with a σ-finite
non-negative Borel measure m (more precisely
m(Br (x)) ≤ ceAr

2
for some A, c > 0); if we fix a point x̄ ∈ X ,

(X , d,m, x̄) denotes the corresponding pointed space.
I Let

P2(X ) :=

{
µ : µ ≥ 0, µ(X ) = 1,

∫
X

d2(x , x̄)µ(dx) <∞
}

=Probability measures with finite second moment.
I Given µ1, µ2 ∈ P2(X ), define the (Kantorovich-Wasserstein)

quadratic transportation distance

W 2
2 (µ1, µ2) := inf

{∫
X×X

d2(x , y) γ(dxdy)

}
where γ ∈ P(X × X ) with (πi )]γ = µi , i = 1, 2

I (P2(X ),W2) is a metric space, geodesic if (X , d) is geodesic



Non smooth setting 2: Entropy functionals

On the metric space (P2(X ),W2) consider the following Entropy
functionals.

I For N ∈ (1,∞], let UN,m(µ) defined as follows: if
µ = ρm� m

UN,m(ρm) := −N
∫
ρ1− 1

N dm if 1 < N <∞ Rényi Entropy

U∞,m(ρm) :=

∫
ρ log ρdm Bolzmann-Shannon Entropy

I if µ is not a.c. then if N <∞ the non a.c. part does not
contribute, if N = +∞ then set U∞,m(µ) =∞.

I Such entropy functionals show up (and actually were
introduced) in statistical mechanics, thermodynamics,
information theory, etc.



Non smooth setting: intrinsic-axiomatic definition. 2

I Crucial observation
[CorderoErausquin-McCann-Schmuckenshlager ’01,
Otto-Villani ’00, Sturm-Von Renesse ’05]
If (X , d,m) is a smooth Riemannian manifold (M, g), then
Ric ≥ 0 (resp. ≥ K ) iff the entropy functional U∞,m is
(K -)convex along geodesics in (P2(X ),W2). i.e. for every
µ0, µ1 ∈ P2(X ) there exists a W2-geodesic (µt)t∈[0,1] such
that for every t ∈ [0, 1] it holds

U∞,m(µt) ≤ (1−t)U∞,m(µ0)+tU∞,m(µ1)−K

2
t(1−t)W2(µ0, µ1)2.

I Notice that the notion of (K -)convexity of the Entropy makes
sense in a general metric measure space (X , d,m).

I DEF of CD(K ,N) condition [Lott-Sturm-Villani ’06]: fixed
N ∈ [1,+∞] and K ∈ R, (X , d,m) is a CD(K ,N)-space if the
Entropy UN,m is K -convex along geodesics in (P2(X ),W2)
(for finite N is a “distorted” (K ,N)-geod. conv.).



Non smooth setting: intrinsic-axiomatic definition. 3

Keep in mind:
- CD(K ,N) definition Ricci curvature ≥ K and dimension ≤ N
in an intrinsic/axiomatic way for metric measure spaces
- the more convex is UN,m along geodesics in (P2(X ),W2), the
more the space is positively Ricci curved.

Good properties:

I CONSISTENT: (M, g) satisfies CD(K ,N) iff Ric ≥ K and
dim(M) ≤ N

I GEOMETRIC PROPERTIES: Brunn-Minkoswski inequality,
Bishop-Gromov volume growth, Bonnet-Myers diameter
bound, Lichnerowictz spectral gap, etc.

I STABLE under convergence of metric measure spaces?
RK: stability will imply that Ricci limits are CD spaces.



Stability of CD(K ,N), 1: Lott-Villani Vs Sturm

I Framework of proper spaces (i.e. bounded closed sets are
compact), Lott-Villani: CD(K ,N) is stable under pointed
measured Gromov-Hausdorff convergence (i.e. for every R > 0
there is measured Gromov-Hausdorff convergence of balls of
radius R around the given points of the space)

I Framework of probability spaces with finite variance (i.e.
m ∈ P2(X )): Sturm defined a distance (also known as
Gromov-Wasserstein in the literature)

D ((X1, d1,m1), (X2, d2,m2)) := inf W2 ((ι1)]m1, (ι2)]m2) ,

inf among all metric spaces (Z , dZ ) and all isometric
embeddings ιi (supp(mi ), di )→ (Z , dZ ), i = 1, 2. He then
proved that CD(K ,N) is stable w.r.t. D-convergence.



Stability of CD(K ,N), 2: not satisfactory for N =∞

I CD(K ,N), for N <∞ implies properness of X , so Lott-Villani
fully covers the situation.

I CD(K ,∞) does not imply any sort of compactness, not even
local, so pmGH-convergence is quite unnatural. At least for
normalized spaces with finite variance Sturm’s approach
covers the situation.

I In some geometric situations, the assumption that m ∈ P2(X )
is a bit too restrictive: e.g. when studying blow ups (i.e.
tangent cone at a point  Cheeger,Colding,Naber) and blow
downs (i.e. tangent cones at infinity  Cheeger, Colding,
Minicozzi, Tian, etc. )

I One may also like to consider sequences of non compact
manifolds with diverging dimensions or more generally
sequences of spaces with diverging doubling constants.

Q:1) What is a natural notion of convergence in these situations?
2) Is CD(K ,∞) stable w.r.t. this notion?



Pointed measured Gromov (pmG for short) convergence

DEF:(Gigli-M.-Savaré) (Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞) in
pmG-sense if there exist a complete and separable space (Z , dz)
and isometric embeddings ιn : Xn → Z , n ∈ N̄ := N ∪ {∞} s.t.∫

ϕ (ιn)]mn →
∫
ϕ (ι∞)]m∞, ∀ϕ ∈ Cbs(Z ), where

Cbs(Z ) := {f : Z → R cont., bounded with bounded support }.

I The definition above is extrinsic but we prove it can be
characterized in a (maybe less immediate) totally intrinsic
way, according various equivalent approaches (via a pointed
version of Gromov reconstruction Theorem or via a
pointed/weighted version of Sturm’s D-distance).

I On doubling spaces pmG-convergence above is equivalent to
mGH-convergence ( consistent with Lott-Villani).

I On normalized spaces of finite variance pmG-convergence is
equivalent to D-convergence ( consistent with Sturm).

I pmG-convergence no a priori assumption on (Xn, dn,mn).



CD(K ,∞) is stable under pmG -convergence

THM(Gigli-M.-Savaré ): Let (Xn, dn,mn, x̄n), n ∈ N, be a sequence
of CD(K ,∞) p.m.m. spaces converging to (X∞, d∞,m∞, x̄∞) in
the pmG-sense. Then (X∞, d∞,m∞) is a CD(K ,∞) space as well.

Rough sketch of Proof (Borrowed from Lott-Sturm-Villani):

1. Prove Γ-convergence of U∞,m under pmG -convergence:
I “Γ− lim inf inequality”: For every µ∞ ∈ P2(X∞) and every

µn ∈ P2(Xn) such that µn → µ∞ weakly in Z , it holds that

U∞,m(µ∞|m∞) ≤ lim inf
n→∞

U∞,m(µn|mn).

I “Existence of a recovery sequence”: For every µ∞ ∈ P2(X∞)
there exist µn ∈ P2(Xn) such that µn → µ∞ weakly in Z and

U∞,m(µ∞|m∞) ≥ lim sup
n→∞

U∞,m(µn|mn).

2. Use the compactness of mn to prove compactness of
Wasserstein-geodesics in the converging spaces

3. Conclude that K -geodesic convexity is preserved.

�


