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Recall from Lecture 1: Def of CD(K ,N)

I CD(K ,N) condition [Lott-Sturm-Villani ’06]: fixed
N ∈ [1,+∞] and K ∈ R, (X , d,m) is a CD(K ,N)-space if the
Entropy UN,m is K -convex along geodesics in (P2(X ),W2)
(for finite N is a “distorted” (K ,N)-geod. conv.).
Cases easier to write, to keep in mind:
I CD(K ,∞): for every µ0, µ1 ∈ P2(X ) there exists a

W2-geodesic (µt)t∈[0,1] such that for every t ∈ [0, 1] it holds

U∞,m(µt) ≤ (1−t)U∞,m(µ0)+tU∞,m(µ1)−K

2
t(1−t)W2(µ0, µ1)2.

I CD(0,N): for every µ0, µ1 ∈ P2(X ) there exists a W2-geodesic
(µt)t∈[0,1] such that for every t ∈ [0, 1] it holds

UN,m(µt) ≤ (1− t)UN,m(µ0) + tUN,m(µ1).



Recall from Lecture 1: stability of CD(K ,N)

I THM: Fix K ∈ R and N ∈ [1,∞]. Let (Xn, dn,mn, x̄n), n ∈ N,
be a sequence of CD(K ,N) p.m.m. spaces converging to
(X∞, d∞,m∞, x̄∞) in the pmGH-sense (or, more generally, in
the pmG sense).
Then (X∞, d∞,m∞) is a CD(K ,N) space as well.

I From the stability of CD(K ,N): any pmGH limit of a
sequence of Riemannian manifolds with Ricci ≥ K and dim
≤ N is a CD(K ,N) space.  CD(K ,N) ⊃ Ricci limits.



Plan of Lecture 2

I Introduce RCD(K ,∞)

I Discuss gradient flows formulation of RCD(K ,∞)

I Finite dimensional theory: RCD(K ,N) and RCD∗(K ,N)

I Bochner inequality and some applications



Part 1: RCD(K ,∞) spaces



CD(K ,N) Vs Ricci limits

I From the stability of CD(K ,N): any pmGH limit of a
sequence of Riemannian manifolds with Ricci ≥ K and dim
≤ N is a CD(K ,N) space.  CD(K ,N) ⊃ Ricci limits.

I Finsler manifolds with Ricci curvature bounded below are
CD(K ,N). E.g. (RN , ‖ · ‖,LN) is CD(0,N), ‖ · ‖ any norm.

I FACT: If a smooth Finsler manifold M is a Ricci-limit space
then M is Riemannian (Cheeger-Colding ’00). the class of
CD(K ,N) is, in some sense, too large.

I Moreover, and maybe more importantly, some fundamental
theorems in comparison geometry of Riemannian manifolds
(e.g. Cheeger-Gromoll Splitting Theorem) are not true in the
larger Finsler category (e.g. (R2, ‖ · ‖∞) is CD(0, 2), contains
a line but does not split isometrically).

I  We wish to reinforce the CD(K ,N) condition in order to
isolate the “Riemannian” CD(K ,N) spaces; in other words,
we wish to rule out Finsler structures, but in a sufficiently
weak way to still get a STABLE notion under pmGH converg.



Cheeger energy and RCD(K ,∞) spaces

I Given a m.m.s. (X , d,m) and f ∈ L2(X ,m), define the
Cheeger energy

Chm(f ) :=
1

2

∫
X
|∇f |2w dm = lim inf

u→f inL2

1

2

∫
X

(lipu)2dm

where |∇f |w is the minimal weak upper gradient.
I Crucial observation: On a Finsler manifold M, the Cheeger

energy is quadratic (i.e. parallelogram identity holds) iff M is
Riemannian. A m.m.s. where the Cheeger energy is quadratic
is said infinitesimally Hilbertian.

I Idea Reinforce the CD condition by asking that the Cheeger
energy is quadratic.

DEF(Ambrosio-Gigli-Savaré, see also Ambrosio-Gigli-M.-Rajala)
Given K ∈ R, (X , d,m) is an RCD(K ,∞) space if it is a
CD(K ,∞) space & infinitesimally Hilbertian.
Question: is RCD(K ,∞) stable under pmG-convergence?



Stability of heat flow under pmG-convergence

I Chm : L2(X ,m)→ R is a convex and l.s.c. functional so (by
classical theory of gradient flows, e.g. Brezis) admits a unique
gradient flow (Ht)t≥0 called Heat flow.

I If (Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞) in the pmG-sense,
then there is a way to define convergence of a sequence
fn ∈ L2(Xn,mn) to a function f∞ ∈ L2(X∞,m∞)

THM(Gigli ’11-Gigli-M-Savaré ’13)[Stability of Heat flows]
Let (Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞) in the pmG-sense, Xn

are CD(K ,∞)-spaces. If fn ∈ L2(Xn,mn) strongly L2-converges to
f∞ ∈ L2(X∞,m∞), then

Hn
t (fn)→ H∞t (f∞) strongly in L2 for every t ≥ 0.

Idea of proof: i) Mosco convergence of Cheeger energies under
pmG-convergence (pass via the entropy).
ii) convergence of resolvant maps
iii) approximate the heat flow by iterated resolvant maps to
conclude. �



Stability of RCD(K ,∞) under pmG-convergence

Fact: (X , d,m) is infinitesimally Hilbertian iff
Ht : L2(X ,m)→ L2(X ,m) is linear for every t > 0.

THM (Ambrosio-Gigli-Savaré ’11, Gigli-M-Savaré ’13): Let
(Xn, dn,mn, x̄n), n ∈ N, be a sequence of RCD(K ,∞) p.m.m.
spaces converging to a limit space (X∞, d∞,m∞, x̄∞) in the
pmG-sense. Then (X∞, d∞,m∞) is RCD(K ,∞) as well.

Idea of proof:
i) we already know that CD(K ,∞) is stable, so (X∞, d∞,m∞) is a
CD(K ,∞) space.
ii) since the heat flows of Xn are linear, by the stability of heat
flows also the limit heat flow is linear.

�



RCD(K ,∞) via gradient flows. Preliminaries

I Let (Y , dY ) be a geodesic space (later we will take
(Y , dY ) = (P2(X ),W2)). A functional E : Y → R ∪ {+∞} is
said K -convex if for every y0, y1 ∈ Y there exists a constant
speed geodesic γ : [0, 1]→ Y such that

γ0 = y0 & γ1 = y1 and

E (γt) ≤ (1− t)E (y0) + tE (y1)− K

2
t(1− t)d2

Y (y0, y1)

I f smooth K -convex function on Rn, then v = −∇f (x) iff

< v , x − y > +
K

2
|x − y |2 + f (x) ≤ f (y) ∀y ∈ Rn

so (xt) is a gradient flow of f , i.e. x ′t = −∇f (x) iff

d

dt

|xt − y |2

2
+

K

2
|xt − y |2 + f (xt) ≤ f (y) ∀y ∈ Rn, t ≥ 0.



RCD(K ,∞) via gradient flows. The EVIK condition

I Definition of EVIK flow: Let (Y , dY ) be a geodesic space and
E a l.s.c. functional. A locally absolutely continuous curve
(yt) with yt ∈ D(E ) for every t > 0 is said EVIK gradient flow
of E if

d

dt

d2
Y (yt , z)

2
+
K

2
d2
Y (yt , z)+E (yt) ≤ E (z) ∀z ∈ Y , a.e.t > 0.

I Remark: the existence of an EVIK flow of E depends on both
the K -convexity of E and the infinitesimal Hilbertianity of the
space; existence is not true in general, but in case of existence
then nice contractivity and regularizing properties of the flow
hold.



RCD(K ,∞) is equivalent to EVIK

Theorem[Ambrosio-Gigli-Savaré(2011)-Ambrosio-Gigli-M.-
Rajala(2012)]: (X , d,m) is RCD(K ,∞) iff
for every µ ∈ P2(X ) with supp(µ) ⊂ supp(m) there exists an EVIK
gradient flow (µt) of U∞,m in (P2(X ),W2) starting from µ.

Remark

I EVIK formulation useful for proving the stability of
RCD(K ,∞) [Ambrosio-Gigli-Savaré(2011)] for m ∈ P(X ) and
[Gigli-M.-Savaré(2013)] for general m and without any
compactness assumption.

I EVIK formulation useful to prove that RCD(K ,∞) is
equivalent to BE (K ,∞), i.e. Bochner inequality for N =∞
[Ambrosio-Gigli-Savaré(2012)].
(See later for more on Bochner inequality)



Finite dimensional Theory:
RCD∗(K ,N) and RCD(K ,N) spaces



The CD∗(K ,N) condition

I The reduced curvature-dimension condition CD∗(K ,N) was
introduced by Bacher-Sturm (2010)

I Modification of CD(K ,N): (a priori) weaker convexity
condition on UN,m

I CD(K ,N)⇒ CD∗(K ,N)⇒ CD(K ∗,N) where K ∗ = K(N−1)
N

I If (X , d) is non branching then (local to global)
CD∗(K ,N)⇔ CD∗loc(K ,N)⇔ CDloc(K−,N).

I In non branching spaces tensorization holds

I Same geometric consequence of CD(K ,N) (Bishop-Gromov,
Bonnet-Myers, Lichnerowicz) but sometimes with slightly
worse constants.



RCD∗(K ,N) and RCD(K ,N) spaces

DEF: (X , d,m) is RCD∗(K ,N) (resp. RCD(K ,N)) iff Infinit.
Hilbertian CD∗(K ,N) (resp. CD(K ,N)).

Stability: If (Xi , di ,mi , x̄i ) are RCD∗(K ,N) (resp. RCD(K ,N))
and converge in pmGH (or pmG) to (X , d,m, x̄), then (X , d,m) is
RCD∗(K ,N) (resp. RCD(K ,N)) as well.

 any pmGH limit of a sequence of Riemannian manifolds with
Ricci ≥ K and dim ≤ N is a RCD(K ,N) space

RCD(K ,∞) ⊃ RCD∗(K ,N) ⊃ RCD(K ,N) ⊃ Ricci limits of N-dim man

for every N ∈ N.

Q: are the inclusions above strict or not?



About
RCD(K ,∞) ⊃ RCD∗(K ,N) ⊃ RCD(K ,N) ⊃ Ricci limits

I RCD(K ,∞) % RCD∗(K ,N).
Example: Gaussian space (Rn, ‖ · ‖eucl, γn)

I THM (Cavalletti-Milman, Inventiones Math. 2021): In case
m(X ) <∞ it holds RCD∗(K ,N)⇔ RCD(K ,N).
No reason to expect if fails for m(X ) =∞ but adaptation of
proof is not trivial.

I RCD(K ,N) % pmGH limits of Riem. man. with Ricci ≥ K
and dimension ≤ N.
Example: C (RP2) is RCD(0, 3) but cannot be a pmGH limit
of Riem. manifolds with Ricci ≥ 0 and dimension ≤ 3.
If it were, it would be a non-collapsed 3-dimensional Ricci
limit. From recent work by Simon and Simon-Topping (idea:
mollify by Ricci flow) any non-collapsed 3-dim Ricci limit is a
topological manifold, but C (RP2) is not.



Examples of RCD(K ,N) spaces

I Ricci limits (i.e. pmGH limits of Riem. Man. with Ricci≥ K
and dim≤ N), no matter if collapsed or not are RCD(K ,N)

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’12: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
N − Ricci ≥ K : i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD(K ,N).

I Cones or spherical suspensions over RCD(N − 1,N)spaces
(Ketterer)

I Quotients, orbifolds, metric-measure foliations with Ricci
bounded below (GalazGarcia-Kell-M.-Sosa).

I Stratified spaces with Ricci bounded below and cone
angle≤ 2π (Bertrand-Ketterer-Mondello-Richard).



Moral from examples

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
singularities in geometric flows),

I when taking quotients, cones, foliations of Riemannian
manifolds.

If the smooth spaces we started with have Ricci bounded below,
then the non smooth spaces arising are RCD.

→ RCD(K ,N) spaces can be seen as an extension of the class of
smooth Riemannian manifolds with Ricci ≥ K , which is closed
under many natural geometric and analytic operations.
In lecture 4 we will see some smooth applications.



Bochner inequality in m.m.s. setting

I We say that (X , d,m) has the Sobolev-to-Lipschitz property
(StL for short) if
∀f ∈W 1,2(X ), |∇f |2w ≤ 1⇒ f has a 1-Lipschitz repres.

I RCD(K ,∞) implies StL (Ambrosio-Gigli-Savaré ’11).

I We say that (X , d,m) satisfies the dimensional Bochner
Inequality, BI (K ,N) for short, if
-it is inf. Hilbert. & StL holds,
-∀f ∈W 1,2(X , d,m) with 4f ∈ L2(X ,m) and ∀ψ ∈ LIP(X )
with 4ψ ∈ L∞(X ,m) it holds∫
X

[
1

2
|∇f |2w∆ψ + ∆f div(ψ∇f )

]
dm ≥ K

∫
X
|∇f |2wψdm

+
1

N

∫
X
|∆f |2ψdm.

Question: are RCD∗(K ,N) and BI (K ,N) equivalent?



Motivation from the smooth setting

I (M, g) smooth Riemannian manifold, f ∈ C∞(M) then
Bochner identity

1

2
∆|∇f |2 = |Hess f |2 + Ric(∇f ,∇f ) + g(∇∆f ,∇f ).

I If dim(M) ≤ N and Ric ≥ K g then Dimensional Bochner
inequality

1

2
∆|∇f |2 ≥ 1

N
|∆f |2 + K |∇f |2 + g(∇∆f ,∇f ).

To formally obtain BI (K ,N) multiply by ψ ∈ C∞c (M) and
integrate by part.

BI (K ,N) is a fundamental tool: Splitting theorem of
Cheeger-Gromoll 1971, Lichnerowictz bound on spectral gap, upper
bound on first Betti number by Bochner via Hodge theory, etc.



RCD∗(K ,N) is equivalent to BI (K ,N)

THM(Erbar-Kuwada-Sturm and Ambrosio-M.-Savaré )
(X , d,m) satisfies the dimensional Bochner inequality BI (K ,N) iff
it is an RCD∗(K ,N) space.

I the result bridges the Eulerian formulation of Ricci bounds
(Bochner inequality) and the Lagrangian formulation (optimal
transport)

I the approach of EKS is based on the equivalence of an
entropic curvature condition involving the Boltzman entropy
and uses a weighted heat flow (which is linear)

I the (subsequent and independent) proof by AMS involves non
linear diffusion equations in metric spaces: more precisely the
porous media equation (which is the nonlinear gradient flow of
the Renyi entropy) plays a crucial role in the arguments

I the case N =∞ was already established by
Ambrosio-Gilgli-Savaré ’12 via the heat flow



Some ideas of the AMS approach in case K = 0

Idea: Use gradient flows as a bridge between the Eulerian point of
view (Bochner inequality) and the Lagrangian point of view
(optimal transport).

Def: (µt)t≥0 ⊂ P2(X ) is an EVI0 gradient flow of UN,m starting
from µ0 ∈ P2(X ) if

1

2

d

dt
W 2

2 (µt , ν) ≤ UN,m(ν)− UN,m(µt), ∀ν ∈ P(X )

The two parts of the bridge are:
Thm 1:[Ambrosio-M.-Savaré] (X , d,m) satisfies the RCD∗(0,N)
condition iff for every µ0 ∈ P2(X ), the Renyi entropy UN,m admits
an EVI0 gradient flow starting from µ0.

Thm 2:[Ambrosio-M.-Savaré]. (X , d,m) satisfies the BI (0,N)
condition iff for every µ0 ∈ P2(X ), the Renyi entropy UN,m admits
an EVI0 gradient flow starting from µ0.



Formal proof of BI (0,N)⇒ EVI0

Inspired by smooth setting (Otto-Westdickenberg and
Daneri-Savaré) consider the porous media flow.

I Let Pt be the porous media flow defined by the equation

∂tPt(ρ0) = ∆((Ptρ0)1− 1
N )

I CLAIM:(Ptρ0)m defines an EVI0 gradient flow from µ0 = ρ0m
I Given a regular curve (ρsm)s∈[0,1] ⊂ P(X ) call ρs,t := Pstρs
I For every s and t let ϕs,t be the solution to the continuity

equation div(ρs,t∇ϕs,t) = ∂sρs,t
I ∇ϕs,t has to be understood as the velocity field of the curve

s 7→ ρs,t

Lemma 5 The BI (0,N) condition implies that

d

dt

∫
X

1

2
|∇ϕs,t |2ρs,t dm +

d

ds
UN,m(ρs,tm) ≤ 0



Formal proof of BI (0,N)⇒ EVI0

I Thanks to the semigroup property of Pt , enough to check
that EVI0 holds at t = 0, i.e.

1

2

d

dt+
W 2

2 ((Ptµ0), ν) ≤ UN,m(ν)− UN,m(µ0), ∀ν ∈ P(X )

I Let (ρsm)s∈[0,1] be a geodesic from to ν = ρ0m to µ0 := ρ1m
(by density it is enough to consider ν � m)

I Integrating Lemma 5 w.r.t. s ∈ [0, 1] we get

d

dt

∫ 1

0

(∫
X

1

2
|∇ϕs,t |2ρs,t dm

)
ds ≤ UN,m(ν)− UN,m(µ0)



Formal proof of BI (0,N)⇒ EVI0. Conclusion

Conclude observing that

W 2
2 (Pt(µ0), ν) ≤

∫ 1

0

(∫
X

1

2
|∇ϕs,t |2ρs,t dm

)
ds

= “Length of ((Pstρs)m)s∈[0,1] from ν to Ptµ0
′′

W 2
2 (µ0, ν) =

∫ 1

0

(∫
X

1

2
|∇ϕs,0|2ρs dm

)
ds

= “Length of (ρsm)s∈[0,1], W2-geod from ν to µ0
′′

so that

1

2

d

dt+
W 2

2 ((Ptµ0), ν) ≤ d

dt

∫ 1

0

(∫
X

1

2
|∇ϕs,t |2ρs,t dm

)
ds



Consequences of Bochner inequality.
1: Li-Yau and Harnack type inequalities

THM[Garofalo-M. ’13,Jiang ’14] f ∈ L1(X ,m),f ≥ 0 m-a.e.Then

I Li-Yau Inequality: if (X , d,m) is an RCD∗(0,N) space then

∆(log(Ht f )) ≥ −N

2t
m-a.e. ∀t > 0

I Bakry-Quian Inequality: If (X , d,m) is an RCD∗(K ,N) space,
for some K > 0, then

∆(Ht f ) ≤ NK

4
(Ht f ) m-a.e. ∀t > 0

I Harnack Inequality: If (X , d,m) is an RCD∗(K ,N) space, for
some K ≥ 0, then for every x , y ∈ X and 0 < s < t we have

(Ht f )(y) ≥ (Hs f )(x) e
− d2(x,y)

4(t−s)e
2Ks

3

(
1− e

2K
3
s

1− e
2K
3
t

)N
2

.



Localization-Globalization of Curvature-Dimension
conditions

Curvature-dimension bounds are geometrically local concepts, but
the Lott-Sturm-Villani definition is global in nature. So does global
to local and local to global hold?

GTL: typically needs some strong convexity either of the entropy or
of the domain (Book of Villani)

LTG: was established under the non-branching assumption for

I CD(K ,∞) spaces [Sturm ’06], CD(0,N) spaces [Villani ’09]

I CD∗(K ,N) spaces [Bacher-Sturm ’10]

BUT: i) Non Branch + CD(K,N) is NOT stable under mGH-conv.
ii) Rajala ’13: example of a (highly branching) locally
CD∗(0, 4) = CD(0, 4) space but not CD(K ,∞).
Q: how reinforce CD∗(K ,N) to get a stable condition + LTG?



Consequences of Bochner inequality.
2: Local to Global property for RCD∗(K ,N) without a
priori non-branching assumption

THM[Ambrosio-M.-Savaré ’13] Let (X , d,m) be a locally compact
length space and assume there is a covering {Ui}i∈I of X by non
empty open subsets s.t. (Ūi , d,mxŪi ) satisfy RCD(K ,∞) (resp.
RCD∗(K ,N)).
Then (X , d,m) is an RCD(K ,∞) (resp. RCD∗(K ,N)) space.

IDEA of PROOF
(i) by equivalence with BI (K ,N), for every Ui the dimensional
Bochner inequality holds for functions supported on Ui

(ii) Construct partition of unity {χi}i∈I subordinated to {Ui}i∈I of
Lipschitz functions with ∆χi ∈ L∞

(iii) Globalize BI (K ,N) by using partition of unity and conclude
that RCD∗(K ,N) holds by applying globally the equivalence
theorem �



Local to global for Essentially Non Branching CD(K ,N)

DEF(Rajala-Sturm ’14): (X , d,m) is essentially non-branching
(e.n.b. for short) if for every two measures µ0, µ1 ∈ P2(X ),
µ0, µ1 � m the W2 optimal transport concentrates on
non-branching geodesics.

THM (Rajala-Sturm ’14): Any RCD(K ,∞) or RCD∗(K ,N) space
is essentially non-branching.

THM (Cavalletti-Milman ’17) Let (X , d,m) be an e.n.b. space
with m(X ) <∞. Then

CD∗(K ,N)⇔ CD∗loc(K ,N)⇔ CDloc(K ,N)⇔ CD(K ,N).

In particular RCD∗(K ,N)⇔ RCD(K ,N).

The proof uses localization techniques and L1-optimal transport.
Some hints of these techniques in the next lectures.

For simplicity of notation, from now on we will write RCD(K ,N)
in place of RCD∗(K ,N), but all the results hold in RCD∗(K ,N).


