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Recall from Lecture 1: Def of CD(K, N)

» CD(K, N) condition [Lott-Sturm-Villani '06]: fixed
N € [1,400] and K € R, (X,d,m) is a CD(K, N)-space if the
Entropy Un m is K-convex along geodesics in (P2(X), W>)
(for finite N is a “distorted” (K, N)-geod. conv.).
Cases easier to write, to keep in mind:

> CD(K,00): for every pg, 1 € P2(X) there exists a
Wa-geodesic (j1¢)¢efo,1) such that for every t € [0, 1] it holds

K
Uso,m(pie) < (1=1)Uoom(110)+ oo, m (1) = t(1 =) Wa(po, p)?.

> CD(0, N): for every g, 1 € Pa(X) there exists a Wa-geodesic
(¢)tef0,1) such that for every t € [0,1] it holds

uN,m(,Uft) < (1 - t)uN,m(NO) + tuN,m(,Ufl)-



Recall from Lecture 1: stability of CD(K, N)

» THM: Fix K € R and N € [1,00]. Let (X,,dp,mp, X,), n €N,
be a sequence of CD(K, N) p.m.m. spaces converging to
(Xs0, doos Moo, X0 ) in the pmGH-sense (or, more generally, in
the pmG sense).

Then (X0, doo, Moo ) is @ CD(K, N) space as well.

» From the stability of CD(K, N): any pmGH limit of a
sequence of Riemannian manifolds with Ricci > K and dim
< Nisa CD(K, N) space. ~ CD(K, N) D Ricci limits.



Plan of Lecture 2

» Introduce RCD(K, c0)
» Discuss gradient flows formulation of RCD(K, o)
» Finite dimensional theory: RCD(K, N) and RCD*(K, N)

» Bochner inequality and some applications



Part 1. RCD(K, o) spaces



CD(K, N) Vs Ricci limits

» From the stability of CD(K, N): any pmGH limit of a
sequence of Riemannian manifolds with Ricci > K and dim
< N isa CD(K, N) space. ~» CD(K, N) D Ricci limits.

» Finsler manifolds with Ricci curvature bounded below are
CD(K,N). Eg. (RN, |||, £N)is CD(0, N), || - || any norm.

» FACT: If a smooth Finsler manifold M is a Ricci-limit space
then M is Riemannian (Cheeger-Colding '00).~~ the class of
CD(K, N) is, in some sense, too large.

» Moreover, and maybe more importantly, some fundamental
theorems in comparison geometry of Riemannian manifolds
(e.g. Cheeger-Gromoll Splitting Theorem) are not true in the
larger Finsler category (e.g. (R?,|| - [|oo) is CD(0,2), contains
a line but does not split isometrically).

» ~» We wish to reinforce the CD(K, N) condition in order to
isolate the “Riemannian” CD(K, N) spaces; in other words,
we wish to rule out Finsler structures, but in a sufficiently
weak way to still get a STABLE notion under pmGH converg.



Cheeger energy and RCD(K, co) spaces

> Given a mm.s. (X,d,m) and f € L2(X,m), define the
Cheeger energy

Chu(f) := %/X|Vf|ﬁ, dm:uIi_r:}iig{z%/X(lipufdm
where |Vf|,, is the minimal weak upper gradient.

» Crucial observation: On a Finsler manifold M, the Cheeger
energy is quadratic (i.e. parallelogram identity holds) iff M is
Riemannian. A m.m.s. where the Cheeger energy is quadratic
is said infinitesimally Hilbertian.

> Idea Reinforce the CD condition by asking that the Cheeger
energy is quadratic.

DEF(Ambrosio-Gigli-Savaré, see also Ambrosio-Gigli-M.-Rajala)
Given K € R, (X,d,m) is an RCD(K, o) space if it is a
CD(K, ) space & infinitesimally Hilbertian.

Question: is RCD(K, o) stable under pmG-convergence?



Stability of heat flow under pmG-convergence

» Chy : L?(X,m) — R is a convex and |.s.c. functional so (by
classical theory of gradient flows, e.g. Brezis) admits a unique
gradient flow (H;)¢>o called Heat flow.

> If (X, dn, mp, Xn) = (Xoo, doos Moo, Xoo) in the pmG-sense,
then there is a way to define convergence of a sequence
fn € L2(Xn, m,) to a function £y, € L2(Xoo, Meo)

THM(Gigli '11-Gigli-M-Savaré '13)[Stability of Heat flows]

Let (Xn,dn, mp, Xn) = (Xoo, doo, Moo, Xoo) in the pmG-sense, X,
are CD(K, o0)-spaces. If f, € L2(X,,m,) strongly L-converges to
foo € L2(Xoo, Muo), then

HI(f,) — H(fs) strongly in L? for every t > 0.

Idea of proof: i) Mosco convergence of Cheeger energies under
pmG-convergence (pass via the entropy).

ii) convergence of resolvant maps

iii) approximate the heat flow by iterated resolvant maps to
conclude W



Stability of RCD(K, 00) under pmG-convergence

Fact: (X,d,m) is infinitesimally Hilbertian iff
H: . L2(X,m) — L2(X,m) is linear for every t > 0.

THM (Ambrosio-Gigli-Savaré '11, Gigli-M-Savaré '13): Let
(Xn,dn, mp, X,), n € N, be a sequence of RCD(K,00) p.m.m.
spaces converging to a limit space (X0, doo, Moo, Xo0) in the
pmG-sense. Then (X, doo, Moo ) is RCD(K, 00) as well.

Idea of proof:

i) we already know that CD(K, c0) is stable, so (X, doo, Moo) is a
CD(K, o) space.

ii) since the heat flows of X, are linear, by the stability of heat
flows also the limit heat flow is linear.



RCD(K, co) via gradient flows. Preliminaries

> Let (Y,dy) be a geodesic space (later we will take
(Y,dy) = (P2(X), Wa)). A functional E : Y — RU {400} is
said K-convex if for every yp,y1 € Y there exists a constant
speed geodesic 7y : [0,1] — Y such that

Y=y & M=y and
K
E(vt) < (1 —t)E(yo) + tE(y1) — 51‘(1 — t)d3 (vo, y1)

> f smooth K-convex function on R”, then v = —Vf(x) iff
<V, X—y >+ |x—y|2+f(x)<f() Vy € R”
so (x¢) is a gradient flow of f, i.e. x{ = —Vf(x) iff

dx
b=y K



RCD(K, co) via gradient flows. The EVIk condition

» Definition of EVlk flow: Let (Y,dy) be a geodesic space and
E al.s.c. functional. A locally absolutely continuous curve
(ve) with y; € D(E) for every t > 0 is said EVlk gradient flow

of E if
dd? K
E#_{_Ed%(yhz)ﬁ—E(yt) <E(z) VzeY,aet>0.

> Remark: the existence of an EVIk flow of E depends on both
the K-convexity of E and the infinitesimal Hilbertianity of the
space; existence is not true in general, but in case of existence
then nice contractivity and regularizing properties of the flow
hold.



RCD(K, c0) is equivalent to EVik

Theorem[Ambrosio-Gigli-Savaré(2011)-Ambrosio-Gigli-M.-
Rajala(2012)]: (X,d,m) is RCD(K, 00) iff

for every u € Pa(X) with supp(u) C supp(m) there exists an EVik
gradient flow (u¢) of Usom in (P2(X), W) starting from p.

Remark

» EVIk formulation useful for proving the stability of
RCD(K, o0) [Ambrosio-Gigli-Savaré(2011)] for m € P(X) and
[Gigli-M.-Savaré(2013)] for general m and without any
compactness assumption.

» EVIk formulation useful to prove that RCD(K, o0) is
equivalent to BE(K, o0), i.e. Bochner inequality for N = oo
[Ambrosio-Gigli-Savaré(2012)].

(See later for more on Bochner inequality)



Finite dimensional Theory:

RCD*(K,N) and RCD(K, N) spaces



The CD*(K, N) condition

| 4

>

The reduced curvature-dimension condition CD*(K, N) was
introduced by Bacher-Sturm (2010)

Modification of CD(K, N): (a priori) weaker convexity
condition on Uy i

CD(K,N) = CD*(K, N) = CD(K*, N) where K* = K(Y=1)
If (X,d) is non branching then (local to global)

CD*(K, N) < CD: (K, N) < CDjpc(K—, N).

In non branching spaces tensorization holds

Same geometric consequence of CD(K, N) (Bishop-Gromoyv,
Bonnet-Myers, Lichnerowicz) but sometimes with slightly
worse constants.



RCD*(K, N) and RCD(K, N) spaces

DEF: (X,d,m) is RCD*(K, N) (resp. RCD(K, N)) iff Infinit.
Hilbertian CD*(K, N) (resp. CD(K, N)).

Stability: If (Xi,d;, m;, %;) are RCD*(K, N) (resp. RCD(K, N))
and converge in pmGH (or pmG) to (X, d, m, x), then (X,d, m) is
RCD*(K, N) (resp. RCD(K, N)) as well.

~> any pmGH limit of a sequence of Riemannian manifolds with
Ricci > K and dim < N is a RCD(K, N) space

RCD(K,o0) D RCD*(K,N) D RCD(K, N) D Ricci limits of N-dim man
for every N € N.

Q: are the inclusions above strict or not?



About

RCD(K,o0) D RCD*(K, N) > RCD(K, N) D Ricci limits

> RCD(K,o0) 2 RCD*(K, N).
Example: Gaussian space (R", || - ||eucl, Vn)

» THM (Cavalletti-Milman, Inventiones Math. 2021): In case
m(X) < oo it holds RCD*(K, N) < RCD(K, N).
No reason to expect if fails for m(X) = oo but adaptation of
proof is not trivial.

> RCD(K,N) 2 pmGH limits of Riem. man. with Ricci > K
and dimension < M.
Example: C(RPP?) is RCD(0,3) but cannot be a pmGH limit
of Riem. manifolds with Ricci > 0 and dimension < 3.
If it were, it would be a non-collapsed 3-dimensional Ricci
limit. From recent work by Simon and Simon-Topping (idea:
mollify by Ricci flow) any non-collapsed 3-dim Ricci limit is a
topological manifold, but C(RP?) is not.



Examples of RCD(K, N) spaces

» Ricci limits (i.e. pmGH limits of Riem. Man. with Ricci> K
and dim< N), no matter if collapsed or not are RCD(K, N)

» Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90'ies and Otsu-Shioya '94: Ch is quadratic,
Petrunin '12: CD is satisfied)

> Weighted Riemannian manifolds with Bakry—Emery
N — Ricci > K: i.e. (M",g) Riemannian manifold, let
m := W vol; for some smooth function W > 0, then
Ricg w n = Ricg — (N — n)% > Kg
iff (M,dg,m) is RCD(K, N).

» Cones or spherical suspensions over RCD(N — 1, N)spaces
(Ketterer)

» Quotients, orbifolds, metric-measure foliations with Ricci
bounded below (GalazGarcia-Kell-M.-Sosa).

> Stratified spaces with Ricci bounded below and cone
angle< 27 (Bertrand-Ketterer-Mondello-Richard).



Moral from examples

In doing Riemannian geometry one naturally encounters non
smooth spaces

» when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
singularities in geometric flows),

> when taking quotients, cones, foliations of Riemannian
manifolds.

If the smooth spaces we started with have Ricci bounded below,
then the non smooth spaces arising are RCD.

— RCD(K, N) spaces can be seen as an extension of the class of
smooth Riemannian manifolds with Ricci > K, which is closed
under many natural geometric and analytic operations.

In lecture 4 we will see some smooth applications.



Bochner inequality in m.m.s. setting

» We say that (X,d, m) has the Sobolev-to-Lipschitz property
(StL for short) if
Vf € W2(X), |[Vf[2 < 1= f has a 1-Lipschitz repres.

» RCD(K,o0) implies StL (Ambrosio-Gigli-Savaré '11).

» We say that (X, d, m) satisfies the dimensional Bochner
Inequality, BI(K, N) for short, if
-it is inf. Hilbert. & StL holds,
W € WL2(X,d,m) with Af € [2(X,m) and V4 € LIP(X)
with Ay € L*°(X, m) it holds

1 .
/X[§|vf|3vA¢+Afdlv(wf)] dm > K/XIVf!iwdm
1 2
+N/X|Af| Ydm.

Question: are RCD*(K, N) and BI(K, N) equivalent?



Motivation from the smooth setting

» (M, g) smooth Riemannian manifold, f € C°°(M) then
Bochner identity

1
§A|Vf|2 — |Hess f|? + Ric(Vf,Vf) + g(VAF, VF).
» If dim(M) < N and Ric > K g then Dimensional Bochner
inequality

1 1
5A\Vf|2 > N\Aﬂz + K|Vf> + g(VAF, VF).

To formally obtain BI(K, N) multiply by ¢ € C2°(M) and
integrate by part.

BI(K, N) is a fundamental tool: Splitting theorem of
Cheeger-Gromoll 1971, Lichnerowictz bound on spectral gap, upper
bound on first Betti number by Bochner via Hodge theory, etc.



RCD*(K, N) is equivalent to BI(K, N)

THM(Erbar-Kuwada-Sturm and Ambrosio-M.-Savaré )
(X, d, m) satisfies the dimensional Bochner inequality BI(K, N) iff
it is an RCD*(K, N) space.

>

the result bridges the Eulerian formulation of Ricci bounds
(Bochner inequality) and the Lagrangian formulation (optimal
transport)

the approach of EKS is based on the equivalence of an
entropic curvature condition involving the Boltzman entropy
and uses a weighted heat flow (which is linear)

the (subsequent and independent) proof by AMS involves non
linear diffusion equations in metric spaces: more precisely the

porous media equation (which is the nonlinear gradient flow of
the Renyi entropy) plays a crucial role in the arguments

the case N = oo was already established by
Ambrosio-Gilgli-Savaré '12 via the heat flow



Some ideas of the AMS approach in case K =0

Idea: Use gradient flows as a bridge between the Eulerian point of
view (Bochner inequality) and the Lagrangian point of view
(optimal transport).

Def: (pt)e>0 C P2(X) is an EVly gradient flow of Uy  starting
from ug € Pa(X) if

1d
S WE () < Unn() — Un (i), ¥ € P(X)

The two parts of the bridge are:

Thm 1:[Ambrosio-M.-Savaré] (X, d, m) satisfies the RCD*(0, N)
condition iff for every pig € P>(X), the Renyi entropy Uy  admits
an EVIy gradient flow starting from .

Thm 2:[Ambrosio-M.-Savaré]. (X,d, m) satisfies the BI/(0, N)
condition iff for every pg € Pp(X), the Renyi entropy Uy  admits
an EVIy gradient flow starting from pp.



Formal proof of BI(0, N) = EVI,

Inspired by smooth setting (Otto-Westdickenberg and
Daneri-Savaré) consider the porous media flow.

> Let P; be the porous media flow defined by the equation
1
B:Pe(po) = A((Pepo)' ™)

» CLAIM:(P¢po)m defines an EVIy gradient flow from pg = pom

Given a regular curve (psm)scpo,1] € P(X) call ps ¢ := Pseps

> For every s and t let ¢, ; be the solution to the continuity
equation div(ps Vs ) = Ospst

» Vs has to be understood as the velocity field of the curve
S Psit

v

Lemma 5 The BI(0, N) condition implies that

d 1
- §|v905,t

d
dt Jx 2ps,t dm + _SUN,m(ps,tm) <0

d




Formal proof of BI(0, N) = EVI,

» Thanks to the semigroup property of P;, enough to check
that EVIy holds at t =0, i.e.

1 d
S WE((Putio),v) < Unim(v) — Unm(10), ¥ € P(X)

> Let (psm)sepo,1) be a geodesic from to v = pom to pg := p1m
(by density it is enough to consider v < m)

» Integrating Lemma 5 w.r.t. s € [0, 1] we get

d [? 1
E (/X §|V(Ps,t‘zps,t dm) ds < Z/{N,m(l/) - Z/IN,m(,MO)
0



Formal proof of BI(0, N) = EVIly. Conclusion

Conclude observing that

W3 (Pe(po),v) <

W22(:u0? Z/) =

so that

1
1
/ (/ §|V(Ps,t‘2ps,tdm) ds
0 X

“Length of ((Pstps)m)sefo.1] from v to Pepo”

! 1
/ (/ ~ Vs olps dm) ds
0o \Jx2

“Length of (psm)sejo,1), Wa-geod from v to wo”

d 2 d [! 1 )
z < z
2 dt+ W2 ((’Dt.uO)ay) = dt_/ov (/X 2|v<,05’t| Ps,t dm) ds



Consequences of Bochner inequality.

1: Li-Yau and Harnack type inequalities

THM[Garofalo-M. '13,Jiang '14] f € L}(X,m),f > 0 m-a.e.Then
» Li-Yau Inequality: if (X,d, m) is an RCD*(0, N) space then
N
A(log(H:f)) > —5 Wae vVt >0
» Bakry-Quian Inequality: If (X,d, m) is an RCD*(K, N) space,

for some K > 0, then

NK
A(Hef) < == (Hif)  m-ae. VE>0

» Harnack Inequality: If (X,d,m) is an RCD*(K, N) space, for
some K > 0, then for every x,y € X and 0 < s < t we have

SR (1 e\ B
(Hef)(y) > (HsF)(x) e s (1—> -
—e3



Localization-Globalization of Curvature-Dimension

conditions

Curvature-dimension bounds are geometrically local concepts, but
the Lott-Sturm-Villani definition is global in nature. So does global
to local and local to global hold?

GTL: typically needs some strong convexity either of the entropy or
of the domain (Book of Villani)

LTG: was established under the non-branching assumption for

» CD(K,o0) spaces [Sturm '06], CD(0, N) spaces [Villani '09]
» CD*(K, N) spaces [Bacher-Sturm '10]

BUT: i) Non Branch + CD(K,N) is NOT stable under mGH-conv.
ii) Rajala '13: example of a (highly branching) locally

CD*(0,4) = CD(0,4) space but not CD(K, o).

Q: how reinforce CD*(K, N) to get a stable condition + LTG?



Consequences of Bochner inequality.

2: Local to Global property for RCD*(K, N) without a
priori non-branching assumption

THM[Ambrosio-M.-Savaré '13] Let (X,d, m) be a locally compact
length space and assume there is a covering {U;};c; of X by non
empty open subsets s.t. (U;,d, m_U;) satisfy RCD(K, o) (resp.
RCD*(K, N)).

Then (X,d, m) is an RCD(K, c0) (resp. RCD*(K, N)) space.

IDEA of PROOF

(i) by equivalence with BI(K, N), for every U; the dimensional
Bochner inequality holds for functions supported on U;

(i) Construct partition of unity {x;};c; subordinated to {U;};es of
Lipschitz functions with Ay; € L™

(iii) Globalize BI(K, N) by using partition of unity and conclude
that RCD*(K, N) holds by applying globally the equivalence
theorem O



Local to global for Essentially Non Branching CD(K, N)

DEF(Rajala-Sturm '14): (X, d, m) is essentially non-branching
(e.n.b. for short) if for every two measures pg, p1 € P2(X),

1o, n1 < m the W5 optimal transport concentrates on
non-branching geodesics.

THM (Rajala-Sturm '14): Any RCD(K, o0) or RCD*(K, N) space
is essentially non-branching.

THM (Cavalletti-Milman '17) Let (X,d, m) be an e.n.b. space
with m(X) < oo. Then

CD*(K,N) & CDj (K, N) < CDp(K,N) < CD(K, N).
In particular RCD*(K, N) < RCD(K, N).
The proof uses localization techniques and L'-optimal transport.

Some hints of these techniques in the next lectures.

For simplicity of notation, from now on we will write RCD(K, N)
in place of RCD*(K, N), but all the results hold in RCD*(K, N).



