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Recap

I Lecture 1: CD(K ,N) spaces, K ∈ R, N ∈ [1,+∞].
Motivation, definition, stability.

I Lecture 2: RCD&RCD∗(K ,N) spaces, K ∈ R, N ∈ [1,+∞].
Motivation, definition, stability, Bochner inequality.

I Lecture 3: structure theory of RCD∗(K ,N) spaces,
K ∈ R, N ∈ [1,+∞).

I Lecture 4: sharp & rigid geometric & functional inequalities



Splitting Theorem

A key theorem for smooth Riemannian manifolds is the

Splitting Theorem (Cheeger-Gromoll ’71) Let (M, g) be a
complete smooth Riemannian manifold with Ricci≥ 0. Assume M
contains a line, i.e. an isometric immersion of R. Then M is
isometric to a splitting M ′ × R.

Analogous statement generalized to Ricci limits by Cheeger-Colding
’97, and generalized to RCD∗(0,N) spaces by Gigli ’13:

Splitting Theorem for RCD (Gigli ’13). Let (X , d,m) be an
RCD∗(0,N) space. Assume X contains a line. Then there exists
an RCD∗(0,N − 1) space (X ′, d′,m′) such that (X , d,m) is
isomorphic as m.m.s. to (X ′ × R, d′ ⊗ dE ,m

′ ⊗ L1).



Euclidean tangents to RCD∗(K ,N) spaces

I Cheeger-Colding ’97: for limit spaces the local blow ups are
a.e. unique and Euclidean.

I Q: is it true also for RCD∗(K ,N) spaces?

I Notation Fixed x̄ ∈ X , call Tan(X , d,m, x̄) the set of local
blow ups (also called tangent cones) of X at x̄ .

THM [Gigli-M.-Rajala ’13] Let (X , d,m) be an RCD∗(K ,N) space.
Then for m-a.e. x ∈ X there exists n = n(x) ∈ N, n ≤ N, such
that

(Rn, dE ,Ln, 0) ∈ Tan(X , d,m, x).



Idea of proof

1. m-a.e. x̄ ∈ X is the midpoint of some geodesic

2. Take a sequence of blow ups at such x̄ , by Gromov
compactness and by Stability they converge to a limit
RCD∗(0,N) space (Y , dY ,mY , ȳ) ∈ Tan(X , d,m, x̄)

3. By the choice of x̄ , Y contains a line and therefore splits an R
factor, by the splitting thm: Y ∼= Y ′×R, Y ′ RCD∗(0,N − 1).

4. Repeating the construction for Y ′ in place of X we get that
there exists a local blow up Ỹ ′ of Y ′ that splits an R factor:
Ỹ ′ = Y ′′ × R, Y ′′ RCD∗(N − 2, 0)

5. Adapting ideas of Preiss we prove that m-a.e. tangents of
tangents are tangent themselves, i.e.
Y ′′ × R2 = Ỹ ′ × R ∈ Tan(X , d,m, x̄)

6. repeating the scheme iteratively we conclude.

�



Uniqueness of tangents and rectifiability for RCD∗(K ,N)

Q: In the previous Thm we have existence of a Euclidean tangent
cone; but is the tangent cone unique?

THM 2[M.-Naber’14] Let (X , d,m) be an RCD∗(K ,N) space.
Then for m-a.e. x ∈ X the tangent cone IS UNIQUE and
Euclidean, i.e. there exists n = n(x) ∈ N, n ≤ N, such that

{(Rn, dE ,Ln, 0)} = Tan(X , d,m, x),

More precisely we have
THM 3[M.-Naber’14] [Rectifiability of RCD∗(K ,N)-spaces] Let
(X , d,m) be an RCD∗(K ,N) space. Then, for every ε > 0 there
exists a countable collection {Rεj }j∈N of m-measurable subsets of
X , covering X up to an m-negligible set, such that each Rεj is

1 + ε-biLipshitz to a measurable subset of Rkj , for some
1 ≤ kj ≤ N, kj possibly depending on j .



Preliminary remarks

I If X is a Ricci limit space, Thm 2 was first proved by
Cheeger-Colding ’00: prove hessian estimates on harmonic
approximations of distance functions, and use these to force
splitting behavior.

I At the time of the work M.-Naber, the notion of a hessian was
not at the same level as it is for a smooth manifold, and could
not be used in such strength.

I So we proved new estimates: gradient estimates on the excess
function and a new almost splitting theorem with excess  
allows to use the distance functions directly as chart maps.
New even in the smooth context.

I In the meantime Gigli and Gigli-Tamanini developed a
powerful second order calculus for RCD spaces. Moreover
Ambrosio-Honda proved powerful stability properties. Building
on top of such more advanced calculus tools, Brué-Semola-
Pasqualetto recently gave a proof of the rectifiability of RCD
spaces more in the spirit of original Cheeger-Colding proof.



Strategy of proof, 1: the Ak ’s.

Define
Ak := {x ∈ X : ∃ a tangent cone of X at x equal to Rk but

no tangent cone at x splits Rk+1}.
We first prove that
-Ak is m-measurable (it is difference of analytic sets),
- by THM 1 we get m(X \

⋃
k∈N Ak) = 0.

So THM 2-3 are a consequence of the following

THM 4. Let (X , d,m) be an RCD∗(K ,N)-space, and let Ak be as
above. Then
(1) For m-a.e. x ∈ Ak the tangent cone of X at x is unique and
isomorphic to the k-dimensional Euclidean space.
(2) There exists ε̄ = ε̄(K ,N) > 0 such that, for every 0 < ε ≤ ε̄,
Ak is k-rectifiable via 1 + ε-biLipschitz maps. More precisely, for
each ε > 0 we can cover Ak , up to an m-negligible subset, by a
countable collection of sets Uk

ε with the property that each one is
1 + ε-biLipschitz to a subset of Rk .



Strategy of proof, 2: rough idea

1. Given x̄ ∈ Ak , for every 0 < δ << 1 there exists r > 0 such
that dmGH(Bδ−1r (x̄), (Bδ−1r (0k)) ≤ δr .

2. For some radius r << R << δ−1r we can then pick points
{pi , qi}i=1,...,k ∈ X corresponding to the bases ±Rei of Rk .
Define the map
~d =

(
d(p1, ·)−d(p1, x̄), . . . , d(pk , ·)−d(pk , x̄)

)
: Br (x̄)→ Rk .

For δ sufficiently small, ~d is a εr -mGH map Br (x̄)→ Br (0k).

3. MAIN CLAIM: ∃ a set Uε ⊆ Br (x̄) of almost full measure, i.e.
m(Br (x̄) \ Uε) ≤ ε, s.t. ∀x ∈ Uε and s ≤ r , the restriction
map ~d : Bs(x)→ Rk is an εs-measured Gromov Hausdorff
map.

4. From this we can show that the restriction map ~d : Uε → Rk

is in fact 1 + ε-bilipschitz onto its image. By covering Ak with
such sets we will show that Ak is itself rectifiable.



Strategy of proof, 3: two new ingredients

Define ep,q(y) := d(p, y) + d(q, y)− d(p, q), called excess
function. In order to get the main claim, two new ingredients

1. Gradient Excess Estimates. We show that the gradient of the
excess functions epi ,qi of the points {pi , qi} is small in L2,
more precisely: for the above δ > 0 small enough, then

−
∫
Br (x̄)

|Depi ,qi |
2 dm ≤ ε1.

2. Almost splitting via excess: given x ∈ Br (x̄) and s ∈ (0, r), if
−
∫
Bs(x) |Depi ,qi |

2 dm < ε1, then

dmGH

(
Bs(x),BR×Y

s ((0, y))
)
< ε2 s,

for some m.m.s. (Y , dY ,mY , y).
I.e.: gradient of excess small in L2 ⇒ close to a splitting.
Proof by contradiction, in the limit we enter into the
framework of the arguments of Splitting Theorem.



Strategy of proof, 4: construction of Uε

Conclusion via a maximal function argument: for x ∈ Br (x̄) call

M(x) := sup
s∈(0,r)

k∑
i=1

−
∫
Bs(x)

|Depi ,qi |
2 dm.

Define
Uε := {x ∈ Br (x̄) : M(x) < ε}.

By the Gradient Excess Estimates+ L1 → L1,weak continuity of
maximal function operator
⇒ for δ > 0 small enough we have m(Br (x̄) \ Uε) < ε.

But ∀x ∈ Uε, ∀s ≤ r , by construction,∑k
i=1 −
∫
Bs(x) |Depi ,qi |

2 dm ≤ ε. An iteration of the almost splitting
theorem via excess estimates implies then that

dmGH(Bs(x),Bs(0k)) ≤ ε2 s, ∀s ≤ r ⇒ Main claim.



The measure m in the rectifiability

Q: From THM 4 we know that Ak is k-rectifiable. What can we
say about mxAk? Is it absolutely continuous wrt to Hk?

THM(Kell-M., De Philippis-Marchese-Rindler, Gigli-Pasqualetto) :
YES!

mxAk � Hk

Key idea of all the proofs: use result by De Philippis-Rindler (also
announced by Csorney-Jones):

“Converse” of Rademacher Theorem:
Let µ be a non-negative Radon measure on Rn such that every
Lipschitz function is differentiable µ-a.e.. Then µ� Ln.



Constancy of the dimension

I Combining the above results, we have that if (X , d,m) is an

RCD∗(K ,N) space, then X = ∪[N]
k∈N,k=1Ak . Each Ak is

k-rectifiable and mxAk � Hk .
For Ricci-limits, already established by Cheeger-Colding ’00.

I Q: Is it possible to have more than one Ak with m(Ak) > 0?
In other terms: is the dimension of the Euclidean tangent
spaces constant m-a.e. or it is possible to have non-negligible
strata of different dimension?

I For Ricci-limits answered by Colding-Naber ’12: along a
geodesic (γt)t∈[0,1] the tangent cones are Hölder-continuous
in t ∈ [ε, 1− ε] wrt GH topology
 the dimension of tangent cones cannot jump of dimension
along a geodesic, leading to:

I THM (Colding-Naber ’12): If (X , d,m) is a Ricci limit, then
there exists k ∈ N such that m(X \ Ak) = 0.



Constancy of the dimension for RCD∗(K ,N)

THM (Brué-Semola ’18): If (X , d,m) is an RCD∗(K ,N) space,
then there exists k ∈ N ∩ [1, [N]] such that m(X \ Ak) = 0.

Similarities and differences with Colding-Naber

I CN prove estimates on smooth approximation and pass them
into the limit. For RCD there is no smooth approximating
sequence, so need to work directly on the non-smooth space.

I While CN look at how the geometry varies along a minimizing
geodesic, BS look at how the geometry varies along a
Wasserstein geodesic.

I BS avoid using second order differentiation formula (which
was key in CN) and obtain quantitative estimates on flows
which is new even in the smooth setting



Heuristic of Brué-Semola’s approach

I Fact: Let M be a smooth connected differentiable manifold.
Then, for any x , y ∈ M, there exists a smooth diffeomorphism
ϕ : M → M such that ϕ(x) = y .

I Strategy: Build such ϕ as a flow map at a suitable time of a
suitable vector field.

Output

I In smooth setting: this approach gives new quantitative
estimates (in the same spirit of Colding-Naber)

I In non-smooth setting: new results also at the qualitative level
(constancy of the dimension of RCD∗(K ,N) spaces).



Rough strategy of Brué-Semola’s approach

1. Find a “rich enough” class of vector fields admitting a
“regular enough” flow
I vector fields ↔ derivations in sense of Waever ’00 (see also

Gigli ’14)
I flow of Sobolev vector fields ↔ Regular Lagrangian flow in the

sense of Di Perna-Lyons ’89 Ambrosio ’04 and
Ambrosio-Trevisan ’14.

2. Investigate the regularity of such flows.
I BS establish a very powerful Lusin-Lipschitz regularity

(inspired by previous work of Crippa-DeLellis ’08): basically,
the flow is Lipschitz out of a set of small measure.

I Key idea (inspired by previous work by Colding): prove the
estimates in terms of dG := 1/G , where G is the Green
function of the Laplacian instead that in terms of the distance
function.

3. Prove rigidity statements for Lusin-Lipschitz maps (roughly,
they cannot map a piece of Rk1 to Rk2 with k1 6= k2).

4. Combine the ingredients and prove the constancy of the
dimension.



Recent news about structure

I Hölder continuity of tangent cones along interior of geodesics
in RCD∗(K ,N) spaces recently established by Qin Deng ’20.
Difference with Colding-Naber:
I CN perform an iteration on tubular neighbourhoods of a

geodesic iterating on the radius of the tubular neighbourhood.
I Deng does an iteration in the “t” parameter of the geodesic γt .

I Wei-Pan ’21 recently gave examples of Ricci limit spaces with
non-integer Hausdorff dimension and where the Hausdorff
dimension of the singular set exceeds that of the regular set.



N-dimensional RCD∗(K ,N) spaces, N ∈ N

I Analogy with non-collapsed Ricci limit spaces of
Cheeger-Colding ’97

I Honda ’18: (X , d,m) is a (compact) RCD∗(K ,N) space of
Hausdorff dimension N ∈ N, then m = const × HN .

I If (X , d,HN) is RCD∗(K ,N), then Bishop inequality holds
(Kitabeppu ’17). Case K = 0 (for general K compare with
suitable model spaces): HN(Br (x)) ≤ ωN r

n

I De Philippis-Gigli ’18:
I If (X , d,HN) is RCD∗(K ,N), then one has a stratification of

the singular set as for non-collapsed Ricci limits (Ch-Co ’97)
I Colding’s volume convergence holds: For K ∈ R, N ≥ 2,

R ∈ (0,∞) denote B(K ,N,R) the collection of all
(equivalence classes up to isometry of ) closed balls of radius R
in RCD∗(K ,N) spaces equipped with the Gromov-Hausdorff
distance. Then the map B(K ,N,R) 3 Z 7→ HN(Z ) is real
valued and continuous.

I Antonelli-Brué-Semola ’19: quantitative stratification of the
singular set as for non-collapsed Ricci lim. (Cheeger-Naber’13)



N-dimensional RCD∗(K ,N) spaces, N ∈ N
THM (Kapovitch-M. ’19, after Cheeger-Colding ’97 for Ricci
limits) Let (X , d,HN) be an N-dim RCD∗(K ,N). Then

I there exists a dense open subset M ⊂ X with HN(X \M) = 0,
bi-Hölder homeomorphic to a smooth N-dim manifold;

I the (possibly empty) boundary part ∂X ⊂ X (defined
inductively using tangent cones) has Hausdorff dim ≤ N − 1;

I X \
(
∂X ∪M

)
has Hausdorff dimension at most N − 2.

 X is the disjoint union of a manifold part of dimension N, a
boundary part of Hausdorff dimension at most N − 1 and a
singular set of Hausdorff dim ≤ N − 2.

THM (Brué-Naber-Semola ’20) The boundary ∂X is N − 1
rectifiable and homemorphic to a smooth N − 1-dim manifold away
from a set of Hausdorff dim ≤ N − 2.

BNS’s Thm is new even for Ricci limit spaces!



SUMMARY OF RCD∗(K ,N)



Good properties of RCD∗(K ,N)

I Stability under pmGH convergence (Ambrosio-Gigli-Savaré
and Gigli-M.-Savaré)

I Equivalent to contractivity (EVI) of heat flow in W2 in case
N =∞ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)

I Equivalent to Bochner inequality (for N =∞
Ambrosio-Gigli-Savaré, for N ∈ [1,∞) Erbar-Kuwada-Sturm
Vs Ambrosio-M.-Savaré)

I Implies Li-Yau inequalities (Garofalo-M. and Jiang)
I Implies Cheeger-Gromoll Splitting Theorem (Gigli)
I Local structure: Euclidean tangent cones (Gigli-M.-Rajala and

M.-Naber), rectifiability (M.-Naber), a.e. unique dimension of
tangent cones (Brué-Semola)

I Implies that Isometries are a Lie Group (Guijarro-Rodriguez,
Sosa)

I Implies existence of a universal cover + classical Theorems on
the (revised) fundamental group (M.-Wei)

I Local to Global (Ambrosio-M.-Savaré, Cavalletti-Milman)



Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD∗(K ,N), in the latter get RCD∗(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’12: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
N − Ricci ≥ K : i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD∗(K ,N).

I Cones or spherical suspensions over RCD∗(N − 1,N)spaces
(Ketterer)

I Quotients, orbifolds, metric-measure foliations with Ricci
bounded below (GalazGarcia-Kell-M.-Sosa).

I Stratified spaces with Ricci bounded below and cone
angle≤ 2π (Bertrand-Ketterer-Mondello-Richard).

I . . .



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
singularities in geometric flows),

I when taking quotients, cones, foliations of Riemannian
manifolds.

If the smooth spaces we started with have Ricci bounded below,
then the non smooth spaces arising are RCD.

→ RCD∗(K ,N) spaces can be seen as an extension of the class of
smooth Riemannian manifolds with Ricci ≥ K , which is closed
under many natural geometric and analytic operations.
Next lecture we will see some smooth appications.


