Andrea Mondino (University of Oxford)

Summer School 2021
Curvature Constraints and Spaces of Metrics

$$
\begin{aligned}
& \text { June 14-July 2, } 2021 \\
& \text { Institut Fourier-Grenoble (hybrid) }
\end{aligned}
$$

- Lecture 1: $C D(K, N)$ spaces, $K \in \mathbb{R}, N \in[1,+\infty]$. Motivation, definition, stability.
- Lecture 2: $R C D \& R C D^{*}(K, N)$ spaces, $K \in \mathbb{R}, N \in[1,+\infty]$. Motivation, definition, stability, Bochner inequality.
- Lecture 3: structure theory of $R C D^{*}(K, N)$ spaces,

$$
K \in \mathbb{R}, N \in[1,+\infty) .
$$

- Lecture 4: sharp \& rigid geometric \& functional inequalities

Splitting Theorem

A key theorem for smooth Riemannian manifolds is the

Splitting Theorem (Cheeger-Gromoll '71) Let (M, g) be a complete smooth Riemannian manifold with Ricci ≥ 0. Assume M contains a line, i.e. an isometric immersion of \mathbb{R}. Then M is isometric to a splitting $M^{\prime} \times \mathbb{R}$.

Analogous statement generalized to Ricci limits by Cheeger-Colding ' 97 , and generalized to $R C D^{*}(0, N)$ spaces by Gigli '13:

Splitting Theorem for RCD (Gigli '13). Let ($X, \mathrm{~d}, \mathfrak{m}$) be an $R C D^{*}(0, N)$ space. Assume X contains a line. Then there exists an $R C D^{*}(0, N-1)$ space $\left(X^{\prime}, \mathrm{d}^{\prime}, \mathfrak{m}^{\prime}\right)$ such that $(X, \mathrm{~d}, \mathfrak{m})$ is isomorphic as m.m.s. to $\left(X^{\prime} \times \mathbb{R}, \mathrm{d}^{\prime} \otimes \mathrm{d}_{E}, \mathfrak{m}^{\prime} \otimes \mathcal{L}^{1}\right)$.

Euclidean tangents to $R C D^{*}(K, N)$ spaces

- Cheeger-Colding '97: for limit spaces the local blow ups are a.e. unique and Euclidean.
- Q: is it true also for $\operatorname{RCD}(K, N)$ spaces?
- Notation Fixed $\bar{x} \in X$, call $\operatorname{Tan}(X, \mathrm{~d}, \mathfrak{m}, \bar{x})$ the set of local blow ups (also called tangent cones) of X at \bar{x}.

THM [Gigli-M.-Rajala '13] Let $(X, \mathrm{~d}, \mathfrak{m})$ be an $\operatorname{RCD}^{*}(K, N)$ space. Then for \mathfrak{m}-a.e. $x \in X$ there exists $n=n(x) \in \mathbb{N}, n \leq N$, such that

$$
\left(\mathbb{R}^{n}, \mathrm{~d}_{E}, \mathcal{L}_{n}, 0\right) \in \operatorname{Tan}(X, \mathrm{~d}, \mathfrak{m}, x)
$$

Idea of proof

1. \mathfrak{m}-a.e. $\bar{x} \in X$ is the midpoint of some geodesic
2. Take a sequence of blow ups at such \bar{x}, by Gromov compactness and by Stability they converge to a limit $R C D^{*}(0, N)$ space $\left(Y, \mathrm{~d}_{Y}, \mathfrak{m}_{Y}, \bar{y}\right) \in \operatorname{Tan}(X, \mathrm{~d}, \mathfrak{m}, \bar{x})$
3. By the choice of \bar{x}, Y contains a line and therefore splits an \mathbb{R} factor, by the splitting thm: $Y \cong Y^{\prime} \times \mathbb{R}, Y^{\prime} R C D^{*}(0, N-1)$.
4. Repeating the construction for Y^{\prime} in place of X we get that there exists a local blow up \tilde{Y}^{\prime} of Y^{\prime} that splits an \mathbb{R} factor: $\tilde{Y}^{\prime}=Y^{\prime \prime} \times \mathbb{R}, Y^{\prime \prime} R C D^{*}(N-2,0)$
5. Adapting ideas of Preiss we prove that \mathfrak{m}-a.e. tangents of tangents are tangent themselves, i.e.

$$
Y^{\prime \prime} \times \mathbb{R}^{2}=\tilde{Y}^{\prime} \times \mathbb{R} \in \operatorname{Tan}(X, \mathrm{~d}, \mathfrak{m}, \bar{x})
$$

6. repeating the scheme iteratively we conclude.

Uniqueness of tangents and rectifiability for $R C D^{*}(K, N)$

Q: In the previous Thm we have existence of a Euclidean tangent cone; but is the tangent cone unique?

THM 2[M.-Naber'14] Let $(X, \mathrm{~d}, \mathfrak{m})$ be an $\operatorname{RCD}^{*}(K, N)$ space. Then for \mathfrak{m}-a.e. $x \in X$ the tangent cone IS UNIQUE and Euclidean, i.e. there exists $n=n(x) \in \mathbb{N}, n \leq N$, such that

$$
\left\{\left(\mathbb{R}^{n}, \mathrm{~d}_{E}, \mathcal{L}_{n}, 0\right)\right\}=\operatorname{Tan}(X, \mathrm{~d}, \mathfrak{m}, x)
$$

More precisely we have
THM 3[M.-Naber'14] [Rectifiability of $R C D^{*}(K, N)$-spaces] Let $(X, \mathrm{~d}, \mathfrak{m})$ be an $R C D^{*}(K, N)$ space. Then, for every $\varepsilon>0$ there exists a countable collection $\left\{R_{j}^{\varepsilon}\right\}_{j \in \mathbb{N}}$ of \mathfrak{m}-measurable subsets of X, covering X up to an \mathfrak{m}-negligible set, such that each R_{j}^{ε} is $1+\varepsilon$-biLipshitz to a measurable subset of $\mathbb{R}^{k_{j}}$, for some $1 \leq k_{j} \leq N, k_{j}$ possibly depending on j.

Preliminary remarks

- If X is a Ricci limit space, Thm 2 was first proved by Cheeger-Colding '00: prove hessian estimates on harmonic approximations of distance functions, and use these to force splitting behavior.
- At the time of the work M.-Naber, the notion of a hessian was not at the same level as it is for a smooth manifold, and could not be used in such strength.
- So we proved new estimates: gradient estimates on the excess function and a new almost splitting theorem with excess \rightsquigarrow allows to use the distance functions directly as chart maps. New even in the smooth context.
- In the meantime Gigli and Gigli-Tamanini developed a powerful second order calculus for RCD spaces. Moreover Ambrosio-Honda proved powerful stability properties. Building on top of such more advanced calculus tools, Brué-SemolaPasqualetto recently gave a proof of the rectifiability of $R C D$ spaces more in the spirit of original Cheeger-Colding proof.

Strategy of proof, 1: the A_{k} 's.

Define
$A_{k}:=\left\{x \in X: \exists\right.$ a tangent cone of X at x equal to \mathbb{R}^{k} but no tangent cone at \times splits $\left.\mathbb{R}^{k+1}\right\}$.
We first prove that

- A_{k} is \mathfrak{m}-measurable (it is difference of analytic sets),
- by THM 1 we get $\mathfrak{m}\left(X \backslash \bigcup_{k \in \mathbb{N}} A_{k}\right)=0$.

So THM 2-3 are a consequence of the following
THM 4. Let $(X, \mathrm{~d}, \mathfrak{m})$ be an $R C D^{*}(K, N)$-space, and let A_{k} be as above. Then
(1) For \mathfrak{m}-a.e. $x \in A_{k}$ the tangent cone of X at x is unique and isomorphic to the k-dimensional Euclidean space.
(2) There exists $\bar{\varepsilon}=\bar{\varepsilon}(K, N)>0$ such that, for every $0<\varepsilon \leq \bar{\varepsilon}$, A_{k} is k-rectifiable via $1+\varepsilon$-biLipschitz maps. More precisely, for each $\varepsilon>0$ we can cover A_{k}, up to an \mathfrak{m}-negligible subset, by a countable collection of sets U_{ε}^{k} with the property that each one is $1+\varepsilon$-biLipschitz to a subset of \mathbb{R}^{k}.

Strategy of proof, 2: rough idea

1. Given $\bar{x} \in A_{k}$, for every $0<\delta \ll 1$ there exists $r>0$ such that $\mathrm{d}_{m G H}\left(B_{\delta^{-1} r}(\bar{x}),\left(B_{\delta^{-1} r}\left(0^{k}\right)\right) \leq \delta r\right.$.
2. For some radius $r \ll R \ll \delta^{-1} r$ we can then pick points $\left\{p_{i}, q_{i}\right\}_{i=1, \ldots, k} \in X$ corresponding to the bases $\pm R e_{i}$ of \mathbb{R}^{k}. Define the map $\vec{d}=\left(\mathrm{d}\left(p_{1}, \cdot\right)-\mathrm{d}\left(p_{1}, \bar{x}\right), \ldots, \mathrm{d}\left(p_{k}, \cdot\right)-\mathrm{d}\left(p_{k}, \bar{x}\right)\right): B_{r}(\bar{x}) \rightarrow \mathbb{R}^{k}$.
For δ sufficiently small, \vec{d} is a $\varepsilon r-m G H$ map $B_{r}(\bar{x}) \rightarrow B_{r}\left(0^{k}\right)$.
3. MAIN CLAIM: \exists a set $U_{\varepsilon} \subseteq B_{r}(\bar{x})$ of almost full measure, i.e. $\mathfrak{m}\left(B_{r}(\bar{x}) \backslash U_{\varepsilon}\right) \leq \varepsilon$, s.t. $\forall x \in U_{\varepsilon}$ and $s \leq r$, the restriction map $\vec{d}: B_{s}(x) \rightarrow \mathbb{R}^{k}$ is an εs-measured Gromov Hausdorff map.
4. From this we can show that the restriction map $\vec{d}: U_{\varepsilon} \rightarrow \mathbb{R}^{k}$ is in fact $1+\varepsilon$-bilipschitz onto its image. By covering A_{k} with such sets we will show that A_{k} is itself rectifiable.

Strategy of proof, 3: two new ingredients

Define $e_{p, q}(y):=\mathrm{d}(p, y)+\mathrm{d}(q, y)-\mathrm{d}(p, q)$, called excess function. In order to get the main claim, two new ingredients

1. Gradient Excess Estimates. We show that the gradient of the excess functions $e_{p_{i}, q_{i}}$ of the points $\left\{p_{i}, q_{i}\right\}$ is small in L^{2}, more precisely: for the above $\delta>0$ small enough, then

$$
f_{B_{r}(\bar{x})}\left|D e_{p_{i}, q_{i}}\right|^{2} d \mathfrak{m} \leq \varepsilon_{1} .
$$

2. Almost splitting via excess: given $x \in B_{r}(\bar{x})$ and $s \in(0, r)$, if $f_{B_{s}(x)}\left|D e_{p_{i}, q_{i}}\right|^{2} d \mathfrak{m}<\varepsilon_{1}$, then

$$
\mathrm{d}_{m G H}\left(B_{s}(x), B_{s}^{\mathbb{R} \times Y}((0, y))\right)<\varepsilon_{2} s
$$

for some m.m.s. $\left(Y, \mathrm{~d}_{Y}, \mathfrak{m}_{Y}, y\right)$.
I.e.: gradient of excess small in $L^{2} \Rightarrow$ close to a splitting. Proof by contradiction, in the limit we enter into the framework of the arguments of Splitting Theorem.

Strategy of proof, 4: construction of U_{ε}

Conclusion via a maximal function argument: for $x \in B_{r}(\bar{x})$ call

$$
M(x):=\sup _{s \in(0, r)} \sum_{i=1}^{k} f_{B_{s}(x)}\left|D e_{p_{i}, q_{i}}\right|^{2} d \mathfrak{m} .
$$

Define

$$
U_{\varepsilon}:=\left\{x \in B_{r}(\bar{x}): M(x)<\varepsilon\right\} .
$$

By the Gradient Excess Estimates $+L^{1} \rightarrow L^{1, \text { weak }}$ continuity of maximal function operator
\Rightarrow for $\delta>0$ small enough we have $\mathfrak{m}\left(B_{r}(\bar{x}) \backslash U_{\varepsilon}\right)<\varepsilon$.
But $\forall x \in U_{\varepsilon}, \forall s \leq r$, by construction,
$\sum_{i=1}^{k} f_{B_{s}(x)}\left|D e_{p_{i}, q_{i}}\right|^{2} d \mathfrak{m} \leq \varepsilon$. An iteration of the almost splitting theorem via excess estimates implies then that

$$
\mathrm{d}_{m G H}\left(B_{s}(x), B_{s}\left(0^{k}\right)\right) \leq \varepsilon_{2} s, \quad \forall s \leq r \quad \Rightarrow \quad \text { Main claim. }
$$

The measure \mathfrak{m} in the rectifiability

Q: From THM 4 we know that A_{k} is k-rectifiable. What can we say about $\mathfrak{m}\left\llcorner A_{k}\right.$? Is it absolutely continuous wrt to \mathcal{H}^{k} ?

THM(Kell-M., De Philippis-Marchese-Rindler, Gigli-Pasqualetto) : YES!

$$
\mathfrak{m}\left\llcorner A_{k} \ll \mathcal{H}^{k}\right.
$$

Key idea of all the proofs: use result by De Philippis-Rindler (also announced by Csorney-Jones):
"Converse" of Rademacher Theorem:
Let μ be a non-negative Radon measure on \mathbb{R}^{n} such that every Lipschitz function is differentiable μ-a.e.. Then $\mu \ll \mathcal{L}^{n}$.

Constancy of the dimension

- Combining the above results, we have that if $(X, \mathrm{~d}, \mathfrak{m})$ is an $R C D^{*}(K, N)$ space, then $X=\cup_{k \in \mathbb{N}, k=1}^{[N]} A_{k}$. Each A_{k} is k-rectifiable and $\mathfrak{m}\left\llcorner A_{k} \ll \mathcal{H}^{k}\right.$. For Ricci-limits, already established by Cheeger-Colding '00.
- Q: Is it possible to have more than one A_{k} with $\mathfrak{m}\left(A_{k}\right)>0$? In other terms: is the dimension of the Euclidean tangent spaces constant \mathfrak{m}-a.e. or it is possible to have non-negligible strata of different dimension?
- For Ricci-limits answered by Colding-Naber '12: along a geodesic $\left(\gamma_{t}\right)_{t \in[0,1]}$ the tangent cones are Hölder-continuous in $t \in[\epsilon, 1-\epsilon]$ wrt GH topology
\rightsquigarrow the dimension of tangent cones cannot jump of dimension along a geodesic, leading to:
- THM (Colding-Naber '12): If $(X, \mathrm{~d}, \mathfrak{m})$ is a Ricci limit, then there exists $k \in \mathbb{N}$ such that $\mathfrak{m}\left(X \backslash A_{k}\right)=0$.

Constancy of the dimension for $R C D^{*}(K, N)$

THM (Brué-Semola '18): If ($X, \mathrm{~d}, \mathfrak{m}$) is an $R C D^{*}(K, N)$ space, then there exists $k \in \mathbb{N} \cap[1,[N]]$ such that $\mathfrak{m}\left(X \backslash A_{k}\right)=0$.

Similarities and differences with Colding-Naber

- CN prove estimates on smooth approximation and pass them into the limit. For RCD there is no smooth approximating sequence, so need to work directly on the non-smooth space.
- While CN look at how the geometry varies along a minimizing geodesic, BS look at how the geometry varies along a Wasserstein geodesic.
- BS avoid using second order differentiation formula (which was key in CN) and obtain quantitative estimates on flows which is new even in the smooth setting

Heuristic of Brué-Semola's approach

- Fact: Let M be a smooth connected differentiable manifold. Then, for any $x, y \in M$, there exists a smooth diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi(x)=y$.
- Strategy: Build such φ as a flow map at a suitable time of a suitable vector field.

Output

- In smooth setting: this approach gives new quantitative estimates (in the same spirit of Colding-Naber)
- In non-smooth setting: new results also at the qualitative level (constancy of the dimension of $R C D^{*}(K, N)$ spaces).

Rough strategy of Brué-Semola's approach

1. Find a "rich enough" class of vector fields admitting a "regular enough" flow

- vector fields \leftrightarrow derivations in sense of Waever '00 (see also Gigli '14)
- flow of Sobolev vector fields \leftrightarrow Regular Lagrangian flow in the sense of Di Perna-Lyons '89 Ambrosio '04 and Ambrosio-Trevisan '14.

2. Investigate the regularity of such flows.

- BS establish a very powerful Lusin-Lipschitz regularity (inspired by previous work of Crippa-DeLellis '08): basically, the flow is Lipschitz out of a set of small measure.
- Key idea (inspired by previous work by Colding): prove the estimates in terms of $d_{G}:=1 / G$, where G is the Green function of the Laplacian instead that in terms of the distance function.

3. Prove rigidity statements for Lusin-Lipschitz maps (roughly, they cannot map a piece of $\mathbb{R}^{k_{1}}$ to $\mathbb{R}^{k_{2}}$ with $k_{1} \neq k_{2}$).
4. Combine the ingredients and prove the constancy of the dimension.

Recent news about structure

- Hölder continuity of tangent cones along interior of geodesics in $R C D^{*}(K, N)$ spaces recently established by Qin Deng '20. Difference with Colding-Naber:
- CN perform an iteration on tubular neighbourhoods of a geodesic iterating on the radius of the tubular neighbourhood.
- Deng does an iteration in the " t " parameter of the geodesic γ_{t}.
- Wei-Pan '21 recently gave examples of Ricci limit spaces with non-integer Hausdorff dimension and where the Hausdorff dimension of the singular set exceeds that of the regular set.

N-dimensional $R C D^{*}(K, N)$ spaces, $N \in \mathbb{N}$

- Analogy with non-collapsed Ricci limit spaces of Cheeger-Colding '97
- Honda '18: $(X, \mathrm{~d}, \mathfrak{m})$ is a (compact) $R C D^{*}(K, N)$ space of Hausdorff dimension $N \in \mathbb{N}$, then $\mathfrak{m}=$ const $\times \mathcal{H}^{N}$.
- If $\left(X, \mathrm{~d}, \mathcal{H}^{N}\right)$ is $R C D^{*}(K, N)$, then Bishop inequality holds (Kitabeppu '17). Case $K=0$ (for general K compare with suitable model spaces): $\mathcal{H}^{N}\left(B_{r}(x)\right) \leq \omega_{N} r^{n}$
- De Philippis-Gigli '18:
- If $\left(X, \mathrm{~d}, \mathcal{H}^{N}\right)$ is $R C D^{*}(K, N)$, then one has a stratification of the singular set as for non-collapsed Ricci limits (Ch-Co '97)
- Colding's volume convergence holds: For $K \in \mathbb{R}, N \geq 2$, $R \in(0, \infty)$ denote $\mathbb{B}(K, N, R)$ the collection of all (equivalence classes up to isometry of) closed balls of radius R in $R C D^{*}(K, N)$ spaces equipped with the Gromov-Hausdorff distance. Then the map $\mathbb{B}(K, N, R) \ni Z \mapsto \mathcal{H}^{N}(Z)$ is real valued and continuous.
- Antonelli-Brué-Semola '19: quantitative stratification of the singular set as for non-collapsed Ricci lim. (Cheeger-Naber'13)

N-dimensional $R C D^{*}(K, N)$ spaces, $N \in \mathbb{N}$

THM (Kapovitch-M. '19, after Cheeger-Colding '97 for Ricci limits) Let $\left(X, \mathrm{~d}, \mathcal{H}^{N}\right)$ be an $N-\operatorname{dim} R C D^{*}(K, N)$. Then

- there exists a dense open subset $M \subset X$ with $\mathcal{H}^{N}(X \backslash M)=0$, bi-Hölder homeomorphic to a smooth N-dim manifold;
- the (possibly empty) boundary part $\partial X \subset X$ (defined inductively using tangent cones) has Hausdorff $\operatorname{dim} \leq N-1$;
- $X \backslash(\partial X \cup M)$ has Hausdorff dimension at most $N-2$.
$\rightsquigarrow X$ is the disjoint union of a manifold part of dimension N, a boundary part of Hausdorff dimension at most $N-1$ and a singular set of Hausdorff $\operatorname{dim} \leq N-2$.

THM (Brué-Naber-Semola '20) The boundary ∂X is $N-1$ rectifiable and homemorphic to a smooth N-1-dim manifold away from a set of Hausdorff $\operatorname{dim} \leq N-2$.

BNS's Thm is new even for Ricci limit spaces!

SUMMARY OF RCD* ${ }^{*}(K, N)$

Good properties of $R C D^{*}(K, N)$

- Stability under pmGH convergence (Ambrosio-Gigli-Savaré and Gigli-M.-Savaré)
- Equivalent to contractivity (EVI) of heat flow in W_{2} in case $N=\infty$ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)
- Equivalent to Bochner inequality (for $N=\infty$ Ambrosio-Gigli-Savaré, for $N \in[1, \infty)$ Erbar-Kuwada-Sturm Vs Ambrosio-M.-Savaré)
- Implies Li-Yau inequalities (Garofalo-M. and Jiang)
- Implies Cheeger-Gromoll Splitting Theorem (Gigli)
- Local structure: Euclidean tangent cones (Gigli-M.-Rajala and M.-Naber), rectifiability (M.-Naber), a.e. unique dimension of tangent cones (Brué-Semola)
- Implies that Isometries are a Lie Group (Guijarro-Rodriguez, Sosa)
- Implies existence of a universal cover + classical Theorems on the (revised) fundamental group (M.-Wei)
- Local to Global (Ambrosio-M.-Savaré, Cavalletti-Milman)

Examples of $R C D$-spaces

- Ricci limits, no matter if collapsed or not and no matter if the dimension is bounded above or not (in the first case get $R C D^{*}(K, N)$, in the latter get $\left.R C D^{*}(K, \infty)\right)$
- Finite dimensional Alexandrov spaces with curvature bounded below (Perelman 90'ies and Otsu-Shioya '94: Ch is quadratic, Petrunin '12: CD is satisfied)
- Weighted Riemannian manifolds with Bakry-Émery $N-$ Ricci $\geq K$: i.e. $\left(M^{n}, g\right)$ Riemannian manifold, let $\mathfrak{m}:=\Psi$ vol $_{g}$ for some smooth function $\Psi \geq 0$, then $R i c_{g, \Psi, N}:=R i c_{g}-(N-n) \frac{\nabla^{2} \Psi^{1 / N-n}}{\Psi^{1 / N-n}} \geq K g$ iff $\left(M, \mathrm{~d}_{g}, \mathfrak{m}\right)$ is $R C D^{*}(K, N)$.
- Cones or spherical suspensions over $R C D^{*}(N-1, N)$ spaces (Ketterer)
- Quotients, orbifolds, metric-measure foliations with Ricci bounded below (GalazGarcia-Kell-M.-Sosa).
- Stratified spaces with Ricci bounded below and cone angle $\leq 2 \pi$ (Bertrand-Ketterer-Mondello-Richard).

Conclusion

In doing Riemannian geometry one naturally encounters non smooth spaces

- when taking limits of Riemannian manifolds (procedure used often, e.g. contradiction arguments, blow up arguments, singularities in geometric flows),
- when taking quotients, cones, foliations of Riemannian manifolds.

If the smooth spaces we started with have Ricci bounded below, then the non smooth spaces arising are $R C D$.
$\rightarrow R C D^{*}(K, N)$ spaces can be seen as an extension of the class of smooth Riemannian manifolds with Ricci $\geq K$, which is closed under many natural geometric and analytic operations.
Next lecture we will see some smooth appications.

