Metric measure spaces satisfying Ricci curvature lower bounds Lecture 3

Andrea Mondino (University of Oxford)

Summer School 2021 Curvature Constraints and Spaces of Metrics June 14–July 2, 2021 Institut Fourier-Grenoble (hybrid)

- ▶ Lecture 1: CD(K, N) spaces, $K \in \mathbb{R}$, $N \in [1, +\infty]$. Motivation, definition, stability.
- ► Lecture 2: RCD&RCD*(K, N) spaces, K ∈ ℝ, N ∈ [1, +∞]. Motivation, definition, stability, Bochner inequality.
- ► Lecture 3: structure theory of $RCD^*(K, N)$ spaces, $K \in \mathbb{R}, N \in [1, +\infty).$
- Lecture 4: sharp & rigid geometric & functional inequalities

A key theorem for smooth Riemannian manifolds is the

Splitting Theorem (Cheeger-Gromoll '71) Let (M, g) be a complete smooth Riemannian manifold with Ricci ≥ 0 . Assume M contains a line, i.e. an isometric immersion of \mathbb{R} . Then M is isometric to a splitting $M' \times \mathbb{R}$.

Analogous statement generalized to Ricci limits by Cheeger-Colding '97, and generalized to $RCD^*(0, N)$ spaces by Gigli '13:

Splitting Theorem for RCD (Gigli '13). Let (X, d, \mathfrak{m}) be an $RCD^*(0, N)$ space. Assume X contains a line. Then there exists an $RCD^*(0, N-1)$ space (X', d', \mathfrak{m}') such that (X, d, \mathfrak{m}) is isomorphic as m.m.s. to $(X' \times \mathbb{R}, d' \otimes d_E, \mathfrak{m}' \otimes \mathcal{L}^1)$.

Euclidean tangents to $RCD^*(K, N)$ spaces

- Cheeger-Colding '97: for limit spaces the local blow ups are a.e. unique and Euclidean.
- Q: is it true also for RCD*(K, N) spaces?
- Notation Fixed x̄ ∈ X, call Tan(X, d, m, x̄) the set of local blow ups (also called tangent cones) of X at x̄.

THM [Gigli-M.-Rajala '13] Let (X, d, \mathfrak{m}) be an $RCD^*(K, N)$ space. Then for \mathfrak{m} -a.e. $x \in X$ there exists $n = n(x) \in \mathbb{N}$, $n \leq N$, such that

$$(\mathbb{R}^n, \mathsf{d}_E, \mathcal{L}_n, 0) \in \mathsf{Tan}(X, \mathsf{d}, \mathfrak{m}, x).$$

Idea of proof

- 1. m-a.e. $\bar{x} \in X$ is the midpoint of some geodesic
- 2. Take a sequence of blow ups at such \bar{x} , by Gromov compactness and by Stability they converge to a limit $RCD^*(0, N)$ space $(Y, d_Y, \mathfrak{m}_Y, \bar{y}) \in Tan(X, d, \mathfrak{m}, \bar{x})$
- By the choice of x̄, Y contains a line and therefore splits an ℝ factor, by the splitting thm: Y ≅ Y' × ℝ, Y' RCD*(0, N-1).
- Repeating the construction for Y' in place of X we get that there exists a local blow up Ÿ' of Y' that splits an ℝ factor: Ÿ' = Y" × ℝ, Y" RCD*(N - 2, 0)
- 5. Adapting ideas of Preiss we prove that m-a.e. tangents of tangents are tangent themselves, i.e. $Y'' \times \mathbb{R}^2 = \tilde{Y}' \times \mathbb{R} \in \text{Tan}(X, d, m, \bar{x})$
- 6. repeating the scheme iteratively we conclude.

Q: In the previous Thm we have existence of a Euclidean tangent cone; but is the tangent cone unique?

THM 2[M.-Naber'14] Let (X, d, \mathfrak{m}) be an $RCD^*(K, N)$ space. Then for \mathfrak{m} -a.e. $x \in X$ the tangent cone IS UNIQUE and Euclidean, i.e. there exists $n = n(x) \in \mathbb{N}$, $n \leq N$, such that

$$\{(\mathbb{R}^n, \mathsf{d}_E, \mathcal{L}_n, 0)\} = \mathsf{Tan}(X, \mathsf{d}, \mathfrak{m}, x),$$

More precisely we have

THM 3[M.-Naber'14] [Rectifiability of $RCD^*(K, N)$ -spaces] Let (X, d, \mathfrak{m}) be an $RCD^*(K, N)$ space. Then, for every $\varepsilon > 0$ there exists a countable collection $\{R_j^{\varepsilon}\}_{j \in \mathbb{N}}$ of \mathfrak{m} -measurable subsets of X, covering X up to an \mathfrak{m} -negligible set, such that each R_j^{ε} is $1 + \varepsilon$ -biLipshitz to a measurable subset of \mathbb{R}^{k_j} , for some $1 \le k_j \le N$, k_j possibly depending on j.

Preliminary remarks

- If X is a Ricci limit space, Thm 2 was first proved by Cheeger-Colding '00: prove hessian estimates on harmonic approximations of distance functions, and use these to force splitting behavior.
- At the time of the work M.-Naber, the notion of a hessian was not at the same level as it is for a smooth manifold, and could not be used in such strength.
- So we proved new estimates: gradient estimates on the excess function and a new almost splitting theorem with excess ~> allows to use the distance functions directly as chart maps. New even in the smooth context.
- In the meantime Gigli and Gigli-Tamanini developed a powerful second order calculus for RCD spaces. Moreover Ambrosio-Honda proved powerful stability properties. Building on top of such more advanced calculus tools, Brué-Semola-Pasqualetto recently gave a proof of the rectifiability of *RCD* spaces more in the spirit of original Cheeger-Colding proof.

Strategy of proof, 1: the A_k 's.

Define

 $A_k := \{ x \in X \ : \ \exists \text{ a tangent cone of } X \text{ at } x \text{ equal to } \mathbb{R}^k \text{ but} \\ \text{ no tangent cone at } x \text{ splits } \mathbb{R}^{k+1} \}.$

We first prove that

 $-A_k$ is m-measurable (it is difference of analytic sets),

- by THM 1 we get $\mathfrak{m}(X \setminus \bigcup_{k \in \mathbb{N}} A_k) = 0.$

So THM 2-3 are a consequence of the following

THM 4. Let (X, d, \mathfrak{m}) be an $RCD^*(K, N)$ -space, and let A_k be as above. Then

(1) For m-a.e. $x \in A_k$ the tangent cone of X at x is unique and isomorphic to the k-dimensional Euclidean space.

(2) There exists $\bar{\varepsilon} = \bar{\varepsilon}(K, N) > 0$ such that, for every $0 < \varepsilon \leq \bar{\varepsilon}$, A_k is *k*-rectifiable via $1 + \varepsilon$ -biLipschitz maps. More precisely, for each $\varepsilon > 0$ we can cover A_k , up to an m-negligible subset, by a countable collection of sets U_{ε}^k with the property that each one is $1 + \varepsilon$ -biLipschitz to a subset of \mathbb{R}^k .

Strategy of proof, 2: rough idea

- 1. Given $\bar{x} \in A_k$, for every $0 < \delta << 1$ there exists r > 0 such that $d_{mGH}(B_{\delta^{-1}r}(\bar{x}), (B_{\delta^{-1}r}(0^k)) \le \delta r$.
- For some radius r << R << δ⁻¹r we can then pick points {p_i, q_i}_{i=1,...,k} ∈ X corresponding to the bases ±Re_i of ℝ^k. Define the map

$$\vec{d} = \left(\mathsf{d}(p_1, \cdot) - \mathsf{d}(p_1, \bar{x}), \dots, \mathsf{d}(p_k, \cdot) - \mathsf{d}(p_k, \bar{x}) \right) : B_r(\bar{x}) \to \mathbb{R}^k.$$

For δ sufficiently small, \vec{d} is a εr -mGH map $B_r(\bar{x}) \to B_r(0^k).$

- 3. MAIN CLAIM: \exists a set $U_{\varepsilon} \subseteq B_r(\bar{x})$ of almost full measure, i.e. $\mathfrak{m}(B_r(\bar{x}) \setminus U_{\varepsilon}) \leq \varepsilon$, s.t. $\forall x \in U_{\varepsilon}$ and $s \leq r$, the restriction map $d: B_s(x) \to \mathbb{R}^k$ is an εs -measured Gromov Hausdorff map.
- 4. From this we can show that the restriction map $\vec{d} : U_{\varepsilon} \to \mathbb{R}^k$ is in fact $1 + \varepsilon$ -bilipschitz onto its image. By covering A_k with such sets we will show that A_k is itself rectifiable.

Strategy of proof, 3: two new ingredients

Define $e_{p,q}(y) := d(p, y) + d(q, y) - d(p, q)$, called excess function. In order to get the main claim, two new ingredients

1. Gradient Excess Estimates. We show that the gradient of the excess functions e_{p_i,q_i} of the points $\{p_i, q_i\}$ is small in L^2 , more precisely: for the above $\delta > 0$ small enough, then

$$\int_{B_r(\bar{x})} |De_{p_i,q_i}|^2 \, d\mathfrak{m} \leq \varepsilon_1.$$

2. Almost splitting via excess: given $x \in B_r(\bar{x})$ and $s \in (0, r)$, if $\int_{B_s(x)} |De_{p_i,q_i}|^2 d\mathfrak{m} < \varepsilon_1$, then

$$\mathsf{d}_{mGH}\left(B_{s}(x),B_{s}^{\mathbb{R}\times Y}((0,y))\right)<\varepsilon_{2}\,s,$$

for some m.m.s. $(Y, d_Y, \mathfrak{m}_Y, y)$. I.e.: gradient of excess small in $L^2 \Rightarrow$ close to a splitting. Proof by contradiction, in the limit we enter into the framework of the arguments of Splitting Theorem.

Strategy of proof, 4: construction of U_{ε}

Conclusion via a maximal function argument: for $x \in B_r(\bar{x})$ call

$$M(x) := \sup_{s \in (0,r)} \sum_{i=1}^{k} \int_{B_{s}(x)} |De_{p_{i},q_{i}}|^{2} d\mathfrak{m}.$$

Define

$$U_{\varepsilon} := \{x \in B_r(\bar{x}) : M(x) < \varepsilon\}.$$

By the Gradient Excess Estimates+ $L^1 \rightarrow L^{1,weak}$ continuity of maximal function operator \Rightarrow for $\delta > 0$ small enough we have $\mathfrak{m}(B_r(\bar{x}) \setminus U_{\varepsilon}) < \varepsilon$.

 \Rightarrow for 0 > 0 small enough we have $\operatorname{III}(D_r(X) \setminus O_{\varepsilon}) < \varepsilon$.

But $\forall x \in U_{\varepsilon}, \forall s \leq r$, by construction, $\sum_{i=1}^{k} \int_{B_{\varepsilon}(x)} |De_{p_{i},q_{i}}|^{2} d\mathfrak{m} \leq \varepsilon$. An iteration of the almost splitting theorem via excess estimates implies then that

 $\mathsf{d}_{mGH}(B_s(x),B_s(0^k)) \leq \varepsilon_2 \, s, \quad \forall s \leq r \quad \Rightarrow \quad \text{Main claim.}$

Q: From THM 4 we know that A_k is k-rectifiable. What can we say about $\mathfrak{m}_{\perp}A_k$? Is it absolutely continuous wrt to \mathcal{H}^k ?

THM(Kell-M., De Philippis-Marchese-Rindler, Gigli-Pasqualetto) : YES!

 $\mathfrak{m} \sqcup A_k \ll \mathcal{H}^k$

Key idea of all the proofs: use result by De Philippis-Rindler (also announced by Csorney-Jones):

"Converse" of Rademacher Theorem:

Let μ be a non-negative Radon measure on \mathbb{R}^n such that every Lipschitz function is differentiable μ -a.e.. Then $\mu \ll \mathcal{L}^n$.

Constancy of the dimension

- Combining the above results, we have that if (X, d, m) is an RCD*(K, N) space, then X = ∪^[N]_{k∈ℕ,k=1}A_k. Each A_k is k-rectifiable and m_∟A_k ≪ H^k. For Ricci-limits, already established by Cheeger-Colding '00.
- Q: Is it possible to have more than one A_k with m(A_k) > 0? In other terms: is the dimension of the Euclidean tangent spaces constant m-a.e. or it is possible to have non-negligible strata of different dimension?
- For Ricci-limits answered by Colding-Naber '12: along a geodesic (γ_t)_{t∈[0,1]} the tangent cones are Hölder-continuous in t ∈ [ε, 1 − ε] wrt GH topology
 → the dimension of tangent cones cannot jump of dimension along a geodesic, leading to:
- THM (Colding-Naber '12): If (X, d, m) is a Ricci limit, then there exists k ∈ N such that m(X \ A_k) = 0.

Constancy of the dimension for $RCD^*(K, N)$

THM (Brué-Semola '18): If (X, d, \mathfrak{m}) is an $RCD^*(K, N)$ space, then there exists $k \in \mathbb{N} \cap [1, [N]]$ such that $\mathfrak{m}(X \setminus A_k) = 0$.

Similarities and differences with Colding-Naber

- CN prove estimates on smooth approximation and pass them into the limit. For RCD there is no smooth approximating sequence, so need to work directly on the non-smooth space.
- While CN look at how the geometry varies along a minimizing geodesic, BS look at how the geometry varies along a Wasserstein geodesic.
- BS avoid using second order differentiation formula (which was key in CN) and obtain quantitative estimates on flows which is new even in the smooth setting

- Fact: Let M be a smooth connected differentiable manifold. Then, for any $x, y \in M$, there exists a smooth diffeomorphism $\varphi : M \to M$ such that $\varphi(x) = y$.
- Strategy: Build such φ as a flow map at a suitable time of a suitable vector field.

Output

- In smooth setting: this approach gives new quantitative estimates (in the same spirit of Colding-Naber)
- In non-smooth setting: new results also at the qualitative level (constancy of the dimension of RCD*(K, N) spaces).

Rough strategy of Brué-Semola's approach

- 1. Find a "rich enough" class of vector fields admitting a "regular enough" flow
 - ▶ vector fields ↔ derivations in sense of Waever '00 (see also Gigli '14)
 - ▶ flow of Sobolev vector fields ↔ Regular Lagrangian flow in the sense of Di Perna-Lyons '89 Ambrosio '04 and Ambrosio-Trevisan '14.
- 2. Investigate the regularity of such flows.
 - BS establish a very powerful Lusin-Lipschitz regularity (inspired by previous work of Crippa-DeLellis '08): basically, the flow is Lipschitz out of a set of small measure.
 - Key idea (inspired by previous work by Colding): prove the estimates in terms of $d_G := 1/G$, where G is the Green function of the Laplacian instead that in terms of the distance function.
- 3. Prove rigidity statements for Lusin-Lipschitz maps (roughly, they cannot map a piece of \mathbb{R}^{k_1} to \mathbb{R}^{k_2} with $k_1 \neq k_2$).
- 4. Combine the ingredients and prove the constancy of the dimension.

- Hölder continuity of tangent cones along interior of geodesics in RCD*(K, N) spaces recently established by Qin Deng '20. Difference with Colding-Naber:
 - CN perform an iteration on tubular neighbourhoods of a geodesic iterating on the radius of the tubular neighbourhood.
 - Deng does an iteration in the "t" parameter of the geodesic γ_t .
- Wei-Pan '21 recently gave examples of Ricci limit spaces with non-integer Hausdorff dimension and where the Hausdorff dimension of the singular set exceeds that of the regular set.

N-dimensional $RCD^*(K, N)$ spaces, $N \in \mathbb{N}$

- Analogy with non-collapsed Ricci limit spaces of Cheeger-Colding '97
- Honda '18: (X,d,m) is a (compact) RCD*(K, N) space of Hausdorff dimension N ∈ N, then m = const × H^N.
- If (X, d, H^N) is RCD*(K, N), then Bishop inequality holds (Kitabeppu '17). Case K = 0 (for general K compare with suitable model spaces): H^N(B_r(x)) ≤ ω_Nrⁿ
- De Philippis-Gigli '18:
 - If (X, d, H^N) is RCD*(K, N), then one has a stratification of the singular set as for non-collapsed Ricci limits (Ch-Co '97)
 - ▶ Colding's volume convergence holds: For $K \in \mathbb{R}$, $N \ge 2$, $R \in (0, \infty)$ denote $\mathbb{B}(K, N, R)$ the collection of all (equivalence classes up to isometry of) closed balls of radius R in $RCD^*(K, N)$ spaces equipped with the Gromov-Hausdorff distance. Then the map $\mathbb{B}(K, N, R) \ni Z \mapsto \mathcal{H}^N(Z)$ is real valued and continuous.
- Antonelli-Brué-Semola '19: quantitative stratification of the singular set as for non-collapsed Ricci lim. (Cheeger-Naber'13)

N-dimensional $RCD^*(K, N)$ spaces, $N \in \mathbb{N}$

THM (Kapovitch-M. '19, after Cheeger-Colding '97 for Ricci limits) Let (X, d, \mathcal{H}^N) be an *N*-dim $RCD^*(K, N)$. Then

- ► there exists a dense open subset M ⊂ X with H^N(X \ M) = 0, bi-Hölder homeomorphic to a smooth N-dim manifold;
- the (possibly empty) boundary part ∂X ⊂ X (defined inductively using tangent cones) has Hausdorff dim ≤ N − 1;
- ▶ $X \setminus (\partial X \cup M)$ has Hausdorff dimension at most N 2.

 $\rightsquigarrow X$ is the disjoint union of a manifold part of dimension N, a boundary part of Hausdorff dimension at most N - 1 and a singular set of Hausdorff dim $\leq N - 2$.

THM (Brué-Naber-Semola '20) The boundary ∂X is N - 1 rectifiable and homemorphic to a smooth N - 1-dim manifold away from a set of Hausdorff dim $\leq N - 2$.

BNS's Thm is new even for Ricci limit spaces!

SUMMARY OF RCD*(K, N)

Good properties of $RCD^*(K, N)$

- Stability under pmGH convergence (Ambrosio-Gigli-Savaré and Gigli-M.-Savaré)
- Equivalent to contractivity (EVI) of heat flow in W_2 in case $N = \infty$ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)
- ► Equivalent to Bochner inequality (for N = ∞ Ambrosio-Gigli-Savaré, for N ∈ [1,∞) Erbar-Kuwada-Sturm Vs Ambrosio-M.-Savaré)
- Implies Li-Yau inequalities (Garofalo-M. and Jiang)
- Implies Cheeger-Gromoll Splitting Theorem (Gigli)
- Local structure: Euclidean tangent cones (Gigli-M.-Rajala and M.-Naber), rectifiability (M.-Naber), a.e. unique dimension of tangent cones (Brué-Semola)
- Implies that Isometries are a Lie Group (Guijarro-Rodriguez, Sosa)
- Implies existence of a universal cover + classical Theorems on the (revised) fundamental group (M.-Wei)
- Local to Global (Ambrosio-M.-Savaré, Cavalletti-Milman)

Examples of *RCD*-spaces

- ► Ricci limits, no matter if collapsed or not and no matter if the dimension is bounded above or not (in the first case get RCD*(K, N), in the latter get RCD*(K, ∞))
- Finite dimensional Alexandrov spaces with curvature bounded below (Perelman 90'ies and Otsu-Shioya '94: *Ch* is quadratic, Petrunin '12: CD is satisfied)
- ▶ Weighted Riemannian manifolds with Bakry-Émery $N - Ricci \ge K$: i.e. (M^n, g) Riemannian manifold, let $\mathfrak{m} := \Psi \operatorname{vol}_g$ for some smooth function $\Psi \ge 0$, then $\operatorname{Ric}_{g,\Psi,N} := \operatorname{Ric}_g - (N - n) \frac{\nabla^2 \Psi^{1/N-n}}{\Psi^{1/N-n}} \ge Kg$ iff (M, d_g, \mathfrak{m}) is $\operatorname{RCD}^*(K, N)$.
- Cones or spherical suspensions over RCD*(N 1, N)spaces (Ketterer)
- Quotients, orbifolds, metric-measure foliations with Ricci bounded below (GalazGarcia-Kell-M.-Sosa).
- Stratified spaces with Ricci bounded below and cone angle≤ 2π (Bertrand-Ketterer-Mondello-Richard).

In doing Riemannian geometry one naturally encounters non smooth spaces

- when taking limits of Riemannian manifolds (procedure used often, e.g. contradiction arguments, blow up arguments, singularities in geometric flows),
- when taking quotients, cones, foliations of Riemannian manifolds.

If the smooth spaces we started with have Ricci bounded below, then the non smooth spaces arising are *RCD*.

 $\rightarrow RCD^*(K, N)$ spaces can be seen as an extension of the class of smooth Riemannian manifolds with Ricci $\geq K$, which is closed under many natural geometric and analytic operations. Next lecture we will see some smooth appications.